OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18093–18102

Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration

Yasushi Takahashi, Yoshinori Tanaka, Hiroyuki Hagino, Tomoyuki Sugiya, Yoshiya Sato, Takashi Asano, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 18093-18102 (2009)
http://dx.doi.org/10.1364/OE.17.018093


View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the localized design of heterostructure photonic crystal nanocavities in order to make them more suitable for integration. While retaining theoretical quality factors of more than ten million, the total length of the heterostructure nanocavity can be reduced to ~5 μm and the shifted air holes comprising the heterostructure can be restricted to the two rows nearest the nanocavity on each side. Though the area for the heterostructure nanocavity investigated thus far was larger than 10 × 10 μm2 in the photonic crystal slab, heterostructure nanocavities of this new design have sizes of approximately 3 × 5 μm2, thus allowing dense integration.

© 2009 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 27, 2009
Revised Manuscript: September 20, 2009
Manuscript Accepted: September 20, 2009
Published: September 23, 2009

Virtual Issues
September 25, 2009 Spotlight on Optics

Citation
Yasushi Takahashi, Yoshinori Tanaka, Hiroyuki Hagino, Tomoyuki Sugiya, Yoshiya Sato, Takashi Asano, and Susumu Noda, "Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration," Opt. Express 17, 18093-18102 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-18093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  3. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]
  5. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006). [CrossRef] [PubMed]
  6. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007). [CrossRef] [PubMed]
  7. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008). [CrossRef] [PubMed]
  8. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  9. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  10. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006). [CrossRef] [PubMed]
  11. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006). [CrossRef] [PubMed]
  12. M. Yamaguchi, T. Asano, and S. Noda, “Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics,” Opt. Express 22(22), 18067–18081 (2008). [CrossRef]
  13. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef] [PubMed]
  14. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]
  15. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  16. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007). [CrossRef] [PubMed]
  17. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008). [CrossRef] [PubMed]
  18. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quautum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999). [CrossRef]
  19. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  20. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  21. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  22. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007). [CrossRef] [PubMed]
  23. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007). [CrossRef] [PubMed]
  24. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide,” Opt. Express 16(7), 4605–4614 (2008). [CrossRef] [PubMed]
  25. Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008). [CrossRef]
  26. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008). [CrossRef]
  27. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007). [CrossRef] [PubMed]
  28. Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005). [CrossRef] [PubMed]
  29. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009). [CrossRef]
  30. T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006). [CrossRef]
  31. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited