OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18178–18183

Photonic-crystal microcavity laser with site-controlled quantum-wire active medium

Kirill A. Atlasov, Milan Calic, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 18178-18183 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Site-controlled quantum-wire photonic-crystal microcavity laser is experimentally demonstrated using optical pumping. The single-mode lasing and threshold are established based on the transient laser response, linewidth narrowing, and the details of the non-linear power input-output charateristics. Average-power threshold as low as ~240 nW (absorbed power) and spontaneous emission coupling coefficient β~0.3 are derived.

© 2009 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 29, 2009
Revised Manuscript: September 10, 2009
Manuscript Accepted: September 17, 2009
Published: September 24, 2009

Kirill A. Atlasov, Milan Calic, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon, "Photonic-crystal microcavity laser with site-controlled quantum-wire active medium," Opt. Express 17, 18178-18183 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. De Martini and G. R. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988). [CrossRef] [PubMed]
  2. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991). [CrossRef]
  3. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006). [CrossRef] [PubMed]
  4. T. Kobayashi, T. Segawa, A. Morimoto, and T. Sueta, in 46th Fall Meeting of the Japanese Applied Physics Society, Tokyo, Japan, 1982, paper 29a-B-26.
  5. H. Yokoyama, in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokoyama and K. Ujihara, eds. (CRC Press, Boca Raton, 1995), p. 311.
  6. T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994). [CrossRef]
  7. R. E. Slusher, and U. Mohideen, in Optical Processes in Microcavities, R. K. Chang and A. J. Campilla, eds. (World Scientific, Singapore, 1996), p. 315.
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  9. D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008). [CrossRef]
  10. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]
  11. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005). [CrossRef]
  12. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308 (2006). [CrossRef] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17(18), 15975–15982 (2009). [CrossRef] [PubMed]
  14. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16(7), 4848–4857 (2008). [CrossRef] [PubMed]
  15. B. Gayral, “Controlling spontaneous emission dynamics in semiconductor microcavities: an experimental approach, PhD thesis,” Ann. Phys. Fr. 26, 1–133 (2001).
  16. F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998). [CrossRef]
  17. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  18. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007). [CrossRef]
  19. K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009). [CrossRef]
  20. D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999). [CrossRef]
  21. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993). [CrossRef]
  22. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Short (~1 um) quantum-wire single-mode photonic-crystal microcavity laser”, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (Optical Society of America, 2009), paper CTuH4.
  23. K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000). [CrossRef]
  24. T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008). [CrossRef] [PubMed]
  25. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992). [CrossRef]
  26. Z. Toffano, “Investigation of threshold transition in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 485–490 (1997). [CrossRef]
  27. R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992). [CrossRef]
  28. G. P. Agrawal and G. R. Gray, “Intensity and phase noise in microcavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 59(4), 399–401 (1991). [CrossRef]
  29. E. Kapon, “Quantum wire lasers,” Proc. IEEE 80(3), 398–410 (1992). [CrossRef]
  30. C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008). [CrossRef] [PubMed]
  31. H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003). [CrossRef]
  32. N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited