OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18184–18195

Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms

Miguel Navarro-Cía, Miguel Beruete, Spyros Agrafiotis, Francisco Falcone, Mario Sorolla, and Stefan A. Maier  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 18184-18195 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A complementary split ring resonator (CSRR)-based metallic layer is proposed as a route to mimic surface plasmon polaritons. A numerical analysis of the textured surface is carried out and compared to previous prominent topologies such as metal mesh, slit array, hole array, and Sievenpiper mushroom surfaces, which are studied as well from a transmission line perspective. These well-documented geometries suffer from a narrowband response, alongside, in most cases, metal thickness constraint (usually of the order of λ/4) and non-subwavelength modal size as a result of the large dimensions of the unit cell (one dimensions is at least of the order of λ/2). All of these limitations are overcome by the proposed CSRR-based surface. Besides, a planar waveguide is proposed as a proof of the potential of this CSRR-based metallic layer for spoof surface plasmon polariton guiding. Fundamental aspects aside, the structure under study is easy to manufacture by simple PCB techniques and it is expected to provide good performance within the frequency band from GHz to THz.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.1245) Materials : Artificially engineered materials
(050.2065) Diffraction and gratings : Effective medium theory
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: August 13, 2009
Revised Manuscript: September 11, 2009
Manuscript Accepted: September 12, 2009
Published: September 24, 2009

Miguel Navarro-Cía, Miguel Beruete, Spyros Agrafiotis, Francisco Falcone, Mario Sorolla, and Stefan A. Maier, "Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms," Opt. Express 17, 18184-18195 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)
  2. S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1214–1220 (2006). [CrossRef]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  4. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950). [CrossRef]
  5. F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  6. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett. 97, 1–4 (2006). [CrossRef]
  7. A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93, 1–3 (2008). [CrossRef]
  8. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave Surface-Plasmon-Like Modes on Thin Metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009). [CrossRef]
  9. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999). [CrossRef]
  10. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (John Wiley & Sons, New York, 2008).
  11. L. Solymar, and E. Shamonina, Waves in Metamaterials (Oxford University Press, New York, 2009).
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  13. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett. 93, 1–4 (2004). [CrossRef]
  14. A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 1–10 (2006). [CrossRef]
  15. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies,” Phys. Rev. Lett. 97, 1–4 (2006). [CrossRef]
  16. M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive Waves in Chains of Complementary Metamaterial Elements,” Appl. Phys. Lett. 88, 1–3 (2006). [CrossRef]
  17. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521 (2008). [CrossRef]
  18. R. Ulrich and M. Tacke, “Submillimeter waveguide on periodic metal structure,” Appl. Phys. Lett. 22(5), 251–253 (1973). [CrossRef]
  19. R. Ulrich, “Modes of propagation on an open periodic waveguide for the far infrared,” in Proceedings Symp. Opt. Acoust. Microelectron., (Polytechnic Press of the Polytechnic Institute of New York. New York, 1974).
  20. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  21. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  22. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  23. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 1–10 (2008). [CrossRef]
  24. D. Pozar, Microwave Engineering (John Wiley & Sons, New York, 2004).
  25. G. V. Eleftheriades, and K. G. Balmain, Negative-Refraction Metamaterials (John Wiley & Sons, Hoboken, New Jersey, 2005).
  26. C. Caloz, and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications (John Wiley & Sons, Hoboken, New Jersey, 2006).
  27. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967). [CrossRef]
  28. M. Beruete, M. Aznabet, M. Navarro-Cía, O. El Mrabet, F. Falcone, N. Aknin, M. Essaaidi, and M. Sorolla, “Electroinductive waves role in left-handed stacked complementary split rings resonators,” Opt. Express 17(3), 1274–1281 (2009). [CrossRef] [PubMed]
  29. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  30. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 1–7 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited