OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18330–18339

Frequency tunable near-infrared metamaterials based on VO2 phase transition

Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock, Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 18330-18339 (2009)
http://dx.doi.org/10.1364/OE.17.018330


View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Engineering metamaterials with tunable resonances from mid-infrared to near-infrared wavelengths could have far-reaching consequences for chip based optical devices, active filters, modulators, and sensors. Utilizing the metal-insulator phase transition in vanadium oxide (VO2), we demonstrate frequency-tunable metamaterials in the near-IR range, from 1.5 - 5 microns. Arrays of Ag split ring resonators (SRRs) are patterned with e-beam lithography onto planar VO2 and etched via reactive ion etching to yield Ag/VO2 hybrid SRRs. FTIR reflection data and FDTD simulation results show the resonant peak position red shifts upon heating above the phase transition temperature. We also show that, by including coupling elements in the design of these hybrid Ag/VO2 bi-layer structures, we can achieve resonant peak position tuning of up to 110 nm.

© 2009 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Metamaterials

History
Original Manuscript: August 11, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: September 18, 2009
Published: September 25, 2009

Citation
Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock, Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater, "Frequency tunable near-infrared metamaterials based on VO2 phase transition," Opt. Express 17, 18330-18339 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-18330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 504–509 (1968). [CrossRef]
  4. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  5. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  6. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007). [CrossRef]
  7. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  9. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  11. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  12. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  13. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  15. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  16. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid- state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  17. H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  18. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tunig of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008). [CrossRef]
  19. J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971). [CrossRef]
  20. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959). [CrossRef]
  21. A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally- driven insulator-to-metal transition in VO2: A view from the ultrafest timescale,” Phys. Rev. B 70(16), 161102 (2004). [CrossRef]
  22. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001). [CrossRef] [PubMed]
  23. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000). [CrossRef]
  24. R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004). [CrossRef] [PubMed]
  25. E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9(2), 702–706 (2009). [CrossRef] [PubMed]
  26. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 hole films,” Appl. Phys. Lett. 88(13), 133115 (2006). [CrossRef]
  27. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007). [CrossRef] [PubMed]
  28. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  29. H. C. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15(19), 12095–12101 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited