OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18340–18353

A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K Moravvej-Farshi  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 18340-18353 (2009)
http://dx.doi.org/10.1364/OE.17.018340


View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we investigate both analytically and numerically four-wave mixing (FWM) in short (80 μm) dispersion engineered slow light photonic crystal waveguides. We demonstrate that both a larger FWM conversion efficiency and an increased FWM bandwidth (~10nm) can be achieved in these waveguides as compared to dispersive PhC waveguides. This improvement is achieved through the net slow light enhancement of the FWM efficiency (almost 30dB as compared to a fast nanowire of similar length), even in the presence of slow light increased linear and nonlinear losses, and the suitable dispersion profile of these waveguides. We show how such improved FWM operation can be advantageously exploited for designing a compact 2R and 3R regenerator with the appropriate nonlinear power transfer function.

© 2009 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides
(200.6015) Optics in computing : Signal regeneration

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 4, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: September 18, 2009
Published: September 25, 2009

Citation
M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K Moravvej-Farshi, "A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration," Opt. Express 17, 18340-18353 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-18340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
  3. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
  4. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 0566041–05660416 (2001).
  5. J. F. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006). [PubMed]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
  7. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009). [PubMed]
  8. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009). [PubMed]
  9. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009). [PubMed]
  10. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [PubMed]
  11. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [PubMed]
  12. M. R. E. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express 16(10), 7551–7563 (2008). [PubMed]
  13. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [PubMed]
  14. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [PubMed]
  15. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
  16. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
  17. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [PubMed]
  18. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007). [PubMed]
  19. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [PubMed]
  20. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007). [PubMed]
  21. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17(3), 1628–1635 (2009). [PubMed]
  22. G. P. Agrawal, “Nonlinear Fiber Optics, ” in Elsevier Inc, ed. Academic Press (2002).
  23. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007). [PubMed]
  24. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006). [PubMed]
  25. T. Kapfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast re-routing of light via slow modes in a nano-photonic directional coupler,” Appl. Phys. Lett. 94(24), 241119–241121 (2009).
  26. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 0339031–0339034 (2005).
  27. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244(10), 3528–3539 (2007).
  28. M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903–253906 (2009). [PubMed]
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 1613181–1613184 (2005).
  30. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008). [PubMed]
  31. N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76(3), 035103–035106 (2007).
  32. M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express 16(18), 13800–13808 (2008). [PubMed]
  33. L. O’Faolain, T. P. White, D. O’Brien, X. D. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007). [PubMed]
  34. L. O’Faolain, S. Schulz, D. M. Beggs, T. P. White, A. Samarelli, M. Sorel, R. M. de la Rue, and T. F. Krauss, “Losses in engineered slow light photonic crystal waveguides”, in Proc. European Conference on PECS-VIII,121, (2009)
  35. L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
  36. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogensilsequioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
  37. W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16(5), 3310–3319 (2008). [PubMed]
  38. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
  39. M. Rochette, J. L. Blows, and B. J. Eggleton, “3R optical regeneration: an all-optical solution with BER improvement,” Opt. Express 14(14), 6414–6427 (2006). [PubMed]
  40. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. European Conference on Optical Communications (ECOC’98), 475 (1998).
  41. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” J. Quantum Electron. 10, 192–196 (2004).
  42. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007). [PubMed]
  43. E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
  44. A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol. 21(9), 1892–1902 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited