OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18469–18477

High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers

S. Ma, H. Sun, Z. Chen, and N. K. Dutta  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18469-18477 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scheme to generate return-to-zero on-off keying (RZ-OOK) high speed all-optical pseudo random bit sequence (PRBS) based on quantum-dot semiconductor optical amplifiers (QD SOA) has been studied. By analyzing the performance of the core functional unit of this system, which is composed of QD SOA-based logic XOR and AND gates, as well as considering the saturation effect of the QD device and noise level of the system, we demonstrated the system’s capability of producing stable high speed optical PRBS signals. Results show that the performance of the system depends on a number of parameters, including relaxation lifetime from QD excited state to ground state, injected current density, bit repetition rate, signal pulse width and single pulse energy. For devices with relaxation time ~1.0 ps, injected current density >1.8 kA/cm2, single pulse energy <1.0 pJ with pulse width around 1.0 ps, the system is capable of PRBS generation at speeds of ~250 Gb/s.

© 2009 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.3750) Optical devices : Optical logic devices

ToC Category:
Optical Devices

Original Manuscript: June 19, 2009
Revised Manuscript: August 20, 2009
Manuscript Accepted: August 31, 2009
Published: September 29, 2009

S. Ma, H. Sun, Z. Chen, and N. K. Dutta, "High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers," Opt. Express 17, 18469-18477 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). [CrossRef]
  2. S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967).
  3. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004). [CrossRef]
  4. J. M. Senior, Optical Fibre Communications – Principles and Practice (Prentice-Hall, London, 1985).
  5. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999). [CrossRef]
  6. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000). [CrossRef]
  7. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000). [CrossRef]
  8. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002). [CrossRef]
  9. H. Sun, Q. Wang, H. Dong, and N. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1892 . [CrossRef] [PubMed]
  10. M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003). [CrossRef]
  11. Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009). [CrossRef]
  12. H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008). [CrossRef]
  13. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004). [CrossRef]
  14. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, Singapore, 2006).
  15. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998). [CrossRef]
  16. T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000). [CrossRef]
  17. T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” in Proceedings of the IEEE95, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1757–1766.
  18. P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008). [CrossRef]
  19. T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001). [CrossRef]
  20. J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006). [CrossRef]
  21. A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997). [CrossRef]
  22. P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001). [CrossRef]
  23. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000). [CrossRef]
  24. J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006). [CrossRef]
  25. O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005). [CrossRef]
  26. A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005). [CrossRef]
  27. D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008). [CrossRef]
  28. T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999). [CrossRef]
  29. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited