OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18489–18500

An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 μm

Hsien-kai Hsiao, K. A. Winick, John D. Monnier, and Jean-Philippe Berger  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18489-18500 (2009)
http://dx.doi.org/10.1364/OE.17.018489


View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integrated-optic, astronomical, two-beam and three-beam, interferometric combiners have been designed and fabricated for operation in the L band (3 μm – 4 μm) for the first time. The devices have been realized in titanium-indiffused, x-cut lithium niobate substrates, and on-chip electro-optic fringe scanning has been demonstrated. White light fringes were produced in the laboratory using the two-beam combiner integrated with an on-chip Y-splitter.

© 2009 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(350.1260) Other areas of optics : Astronomical optics
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Integrated Optics

History
Original Manuscript: August 12, 2009
Revised Manuscript: September 22, 2009
Manuscript Accepted: September 24, 2009
Published: September 29, 2009

Citation
Hsien-kai Hsiao, K. A. Winick, John D. Monnier, and Jean-Philippe Berger, "An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 μm," Opt. Express 17, 18489-18500 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th (Expanded) Edition (Cambridge University Press, 1999), Chap. 10.
  2. A. A. Michelson, “Measurement of Jupiter’s satellites by interference,” Nature 45(1155), 160–161 (1891). [CrossRef]
  3. T. ten Brummelaar, M. Creech-Eakman, and J. Monnier, “Probing stars with optical and near-IR interferometry,” Phys. Today 62(6), 28–33 (2009). [CrossRef]
  4. J. I. Lunine, B. Macintosh, and S. Peale, “The detection and characterization of exoplanets,” Phys. Today 62(5), 46–51 (2009). [CrossRef]
  5. J. Breckinridge and C. Lindensmith, “The astronomical search for origins,” Opt. Photonics News 16(2), 24–29 (2005). [CrossRef]
  6. C. V. M. Fridlund, “The Darwin mission,” Adv. Space Res. 34(3), 613–617 (2004). [CrossRef]
  7. N. A. S. A. Exoplanet Community Report, P.R. Lawson, W. A. Traub and S. C. Unwin, eds., JPL Publication 09–3 (2009). http://exep.jpl.nasa.gov/documents/ExoplanetCommunityReport.pdf
  8. R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometers,” Nature 274(5673), 780–781 (1978). [CrossRef]
  9. P. R. Lawson, O. P. Lay, S. R. Martin, R. D. Peters, R. O. Gappinger, A. Ksendzov, D. P. Scharf, A. J. Booth, C. A. Beichman, E. Serabyn, K. J. Johnston, and W. C. Danchi, “Terrestrial planet finder interferometer 2007-2008 progress and plans,” Proc. SPIE 7013, 70132N (2008). [CrossRef]
  10. W. A. Traub, K. W. Jucks, and C. Noecker, “Biomarkers on extrasolar terrestrial planets: estimates of detectability,” American Astronomical Society, 197th AAS Meeting, #49.03; Bulletin of the Ameri. Astro. Society 32, 1485 (2000).
  11. S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett. 100(15), 153903 (2008). [CrossRef] [PubMed]
  12. P. Kern, F. Malbet, I. Schanen-Duport and P. Benech, “Integrated optics single-mode interferometric beam combiner for near infrared astronomy,” in Proceedings of AstroFib ’96, Integrated Optics for Astronomical Interferometry, pp. 195–204 (1996).
  13. J. P. Berger, K. Rousselet-Perraut, P. Kern, F. Malbet, I. Schanen-Duport, F. Reynaud, P. Haguenauer, and P. Benech, “Integrated optics for astronomical interferometry. II. First laboratory white-light interferograms,” Astron. Astrophys. Suppl. Ser. 139(1), 173–177 (1999). [CrossRef]
  14. P. Haguenauer, J. P. Berger, K. Rousselet-Perraut, P. Kern, F. Malbet, I. Schanen-Duport, and P. Benech, “Integrated optics for astronomical interferometry. III. Optical validation of a planar optics two-telescope beam combiner,” Appl. Opt. 39(13), 2130–2139 (2000). [CrossRef]
  15. J. P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, “Integrated optics for astronomical interferometry. IV. First measurements of stars,” Astron. Astrophys. 376, L31–L34 (2001). [CrossRef]
  16. E. Laurent, K. Rousselet-Perraut, P. Benech, J. P. Berger, S. Gluck, P. Haguenauer, P. Kern, F. Malbet, and I. Schanen-Duport, “Integrated optics for astronomical interferometry. V. Extension to the K band,” Astron. Astrophys. 390(3), 1171–1176 (2002). [CrossRef]
  17. J. B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J. P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006). [CrossRef]
  18. B. Mennesson, J. M. Mariotti, V. Coudé du Foresto, G. Perrin, S. Ridgway, W. A. Traub, N. P. Carleton, M. G. Lacasse, and G. Mazé, “Thermal infrared stellar interferometry using single-mode guided optics: first results with the TISIS experiment on IOTA,” Astron. Astrophys. 346, 181–189 (1999).
  19. G. Li, T. Eckhause, K. A. Winick, J. D. Monnier, and J. P. Berger, “Integrated optic beam combiners in lithium niobate for stellar interferometer,” Proc. SPIE 6268, 626834 (2006). [CrossRef]
  20. R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39 μm,” Appl. Phys. Lett. 46(9), 809–811 (1985). [CrossRef]
  21. J. D. Monnier, “Asymmetric beam combination for optical interferometry,” Publ. Astron. Soc. Pac. 113(783), 639–645 (2001). [CrossRef]
  22. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006).
  23. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985). [CrossRef]
  24. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988). [CrossRef]
  25. K. K. Wong, Properties of Lithium Niobate, (INSPEC, 2002), Chap. 8.
  26. W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802–1806 (1982). [CrossRef]
  27. Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett. 18(19), 2005–2007 (2006). [CrossRef]
  28. R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers,” Appl. Opt. 18(23), 4012–4016 (1979). [CrossRef] [PubMed]
  29. K. Okamoto, Fundamentals of Optical Waveguides, (Academic Press, San Diego, 2000), Chap. 4.
  30. K. Kishioka, “A design method to achieve wide wavelength-flattened responses in directional coupler-type optical power splitters,” J. Lightwave Technol. 19(11), 1705–1715 (2001). [CrossRef]
  31. R. O. Gappinger, R. T. Diaz, A. Ksendzov, P. R. Lawson, O. P. Lay, K. M. Liewer, F. M. Loya, S. R. Martin, E. Serabyn, and J. K. Wallace, “Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression,” Appl. Opt. 48(5), 868–880 (2009). [CrossRef] [PubMed]
  32. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009). [CrossRef] [PubMed]
  33. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  34. L. Labadie, L. Abel-Tiberini, E. LeCoarer, C. Vigreuz-Bercovici, B. Arezki, M. Barillot, J.-E. Broquin, A. Delboulbé, P. Kern, V. Kirschner, P. Labeye, A. Pradel, C. Ruilier, and P. Saguet, “Recent progress in mid infrared integrated optics for nulling interferometry,” Proc. SPIE 6268, 62682E (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited