OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18556–18570

Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics

Shabnam Ghadarghadr, Zhengwei Hao, and Hossein Mosallaei  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18556-18570 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we theoretically characterize the performance of array of plasmonic core-shell nano-radiators located over layered substrates. Engineered substrates are investigated to manipulate the radiation performance of nanoantennas. A rigorous analytical approach for the problem in hand is developed by applying Green’s function analysis of dipoles located above layered materials. It is illustrated that around the electric scattering resonances of the subwavelength spherical particles, each particle can be viewed as an induced electric dipole which is related to the total electric field upon that particle by a polarizability factor. Utilizing this, we can effectively study the physical performance of such structures. The accuracy of our theoretical model is validated through using a full-wave finite difference time domain (FDTD) numerical technique. It is established that by novel arraying of nano-particles and tailoring their multilayer substrates, one can successfully engineer the radiation patterns and beam angles. Several optical nanoantennas designed on layered substrates are explored. Using the FDTD the effect of finite size substrate is also explored.

© 2009 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.1150) Optical devices : All-optical devices
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering

ToC Category:
Optical Devices

Original Manuscript: July 28, 2009
Revised Manuscript: September 10, 2009
Manuscript Accepted: September 11, 2009
Published: September 30, 2009

Shabnam Ghadarghadr, Zhengwei Hao, and Hossein Mosallaei, "Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics," Opt. Express 17, 18556-18570 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with surface plasmons Part I," Science,  40, 58-66 (2006).
  3. S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with surface plasmons Part II," Science,  40, 66-72 (2006).
  4. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys.  98, 011101 (2005). [CrossRef]
  5. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled ag nanoparticles," Phys. Rev. B.  71, 235408 (2005). [CrossRef]
  6. V. Podolskiy, A. Sarychev, and V. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002). [CrossRef]
  7. J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain," Phys. Rev. B. 76, 245403 (2007). [CrossRef]
  8. J. Li, and N. Engheta, "Optical leaky-wave nano-antennas using plasmonic nanowires with periodical variation of permittivity," (presented at the 2005 Annual Meeting of the OSA., Tucson, Arizona, 1620, 2005).
  9. J. Li, A. Salandrino, and N. Engheta, "Radiation characteristics and beam forming of multi-particles nanoantennas at optical frequencies," (iWAT 06: Small Antennas and Novel Metamaterials, White Plains, NY, 432-433, 2006).
  10. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D.W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef]
  11. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna," Opt. Express 16, 10858-10866 (2008). [CrossRef] [PubMed]
  12. D. R. Jackson, T. Zhao, J. T. Williams, A. A. Oliner, "Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture, Part II: Leaky-wave antenna model," (IEEE International Symposium on Antenna and Propagations, 2, 1095-1098, 2003).
  13. N. C. Panoiu, and R. M. Osgood, "Optical antenna arrays in the visible range," Opt. Lett. 32, 2825 (2007). [CrossRef] [PubMed]
  14. H. F. Hofmann, Terukazu, and Y. Kadoya, "Design parameters for a nano-optical yagi-uda antenna," New J. Phys. 9, 217 (2007). [CrossRef]
  15. K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in gaas solar cells," Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]
  16. D. R. Matthews, H. D. Summers, K. Njoh, S. Chappell, R. Errington, and P. Smith, "Optical antenna arrays in the visible range," Opt. Express 15, 3479-3487 (2007). [CrossRef]
  17. D. M. Schaadt, B. Feng, and T. F. Yu, "Optical antenna arrays in the visible range," Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  18. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano Lett. 8, 12 (2008).
  19. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  20. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).
  21. S. Ghadarghadr, and H. Mosallaei, "Array of plasmonic nanoparticles enabling energy coupling-guiding in solar systems: A theoretical analysis," (Optics and Photonics for Advanced Energy Technology, Cambridge, MA, 2009).
  22. S. Ghadarghadr, and H. Mosallaei, "Nanoantennas Array Enabling Optical Communication," (Frontiers in Optics 2009/Laser Science XXV, San Jose, CA, 2009).
  23. H. Mosallaei, "FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices," IEEE Trans. Electromagn. Compat. 49, 649-660 (2007). [CrossRef]
  24. J. A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941).
  25. P. B. Johnson and R. W. Christy, "Optical constants of the nobel metals," Phys. Rev. B 6, 4370-4379 (1972).
  26. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambrdige University Press, United Kingdom, 2006).
  27. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited