OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18581–18589

Reversible giant photocontraction in chalcogenide glass

Laurent Calvez, Zhiyong Yang, and Pierre Lucas  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18581-18589 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that chalcogenide glasses with suitably underconstrained network can undergo reversible giant photocontractions up to a micron depth. These effects result from the combination of two attributes particular to these glasses, (i) the high photosensitivity characteristic of low coordination floppy networks and (ii) the wide window of structural configuration characteristic of fragile glass former. Interestingly these effects are reversible and subsequent irradiation with high intensity results in giant photoexpansion in the same glass. The combination of subsequent photocontraction and photoexpansion on the same glass surface has good potential for the design of complex optical elements.

© 2009 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5335) Materials : Photosensitive materials

ToC Category:

Original Manuscript: August 4, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: September 27, 2009
Published: September 30, 2009

Laurent Calvez, Zhiyong Yang, and Pierre Lucas, "Reversible giant photocontraction in chalcogenide glass," Opt. Express 17, 18581-18589 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004). [CrossRef]
  2. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  3. A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003). [CrossRef]
  4. A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17(8), 1343–1348 (2000). [CrossRef]
  5. A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997). [CrossRef]
  6. J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007). [CrossRef]
  7. P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997). [CrossRef]
  8. H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994). [CrossRef]
  9. A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997). [CrossRef]
  10. K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009). [CrossRef]
  11. G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008). [CrossRef] [PubMed]
  12. L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008). [CrossRef] [PubMed]
  13. M. F. Thorpe, “Continuous deformations in random networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983). [CrossRef]
  14. H. He and M. F. Thorpe, “Elastic properties of glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985). [CrossRef] [PubMed]
  15. C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991). [CrossRef]
  16. L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of glass-forming liquids,” Nature 410(6829), 663–667 (2001). [CrossRef] [PubMed]
  17. C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999). [CrossRef]
  18. M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990). [CrossRef] [PubMed]
  19. P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003). [CrossRef]
  20. P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005). [CrossRef]
  21. P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006). [CrossRef]
  22. H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992). [CrossRef]
  23. N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996). [CrossRef]
  24. C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007). [CrossRef]
  25. O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995). [CrossRef]
  26. Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009). [CrossRef]
  27. C. Spence and S. Elliott,“The mechanism of giant photocontrcation in obliquely-deposited thin films of amorphous germanium chalcogenides,” J. Non-Cryst. Solids 97-98, 1215–1218 (1987). [CrossRef]
  28. J. C. Phillips and M. L. Cohen, “Molecular models of giant photocontractive evaporated chalcogenide films,” Phys. Rev. B 26(6), 3510–3512 (1982). [CrossRef]
  29. K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26(5), 243–245 (1975). [CrossRef]
  30. D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses,” Phys. Rev. Lett. 44(12), 803–806 (1980). [CrossRef]
  31. K. Tanaka, “Mechanisms of photodarkening in amorphous chalcogenides,” J. Non-Cryst. Solids 59–60, 925–928 (1983). [CrossRef]
  32. K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57(9), 5163–5167 (1998). [CrossRef]
  33. H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976). [CrossRef]
  34. I. Shimizu and H. Fritzsche, “Thickness and refractive-index changes associated with photodarkening in evaporated As2S3 films,” J. Appl. Phys. 47(7), 2969–2971 (1976). [CrossRef]
  35. M. Kastner, “Compositional trends in the optical properties of amorphous lone-pair semiconductors,” Phys. Rev. B 7(12), 5237–5252 (1973). [CrossRef]
  36. M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974). [CrossRef]
  37. K. Tanaka, “Optica properties and photoinduced changes in amorphous As-S films,” Thin Solid Films 66(3), 271–279 (1980). [CrossRef]
  38. B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979). [CrossRef]
  39. K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981). [CrossRef]
  40. I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987). [CrossRef]
  41. A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001). [CrossRef]
  42. M. Frumar, B. Frumarova, T. Wagner, and P. Nemec, “Photo-induced phenomena in amorphous and glassy chalcogenides” in Photo-induced metastability in amorphous semiconductors, A. V. Kolobov, ed (WILEY-VCH GmbH & Co. KGaA, Weinheim, 2003)
  43. J. C. Mauro and A. K. Varshneya, “Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71(21), 214105 (2005). [CrossRef]
  44. J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006). [CrossRef] [PubMed]
  45. C. A. Angell, “Perspective on the glass transition,” J. Phys. Chem. Solids 49(8), 863–871 (1988). [CrossRef]
  46. P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited