OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18590–18595

Highly Selective Terahertz Bandpass Filters Based on Trapped Mode Excitation

Oliver Paul, René Beigang, and Marco Rahm  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18590-18595 (2009)
http://dx.doi.org/10.1364/OE.17.018590


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two types of metamaterial-based spectral band-pass filters for the terahertz (THz) frequency range. The metamaterials are specifically designed to operate for waves at normal incidence and to be independent of the field polarization. The functional structures are embedded in films of benzocyclobutene (BCB) resulting in large-area, free-standing and flexible membranes with low intrinsic loss. The proposed filters are investigated by THz time-domain spectroscopy and show a pronounced transmission peak with over 80% amplitude transmission in the passband and a transmission rejection down to the noise level in the stopbands. The measurements are supported by numerical simulations which evidence that the high transmission response is related to the excitation of trapped modes.

© 2009 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.3918) Materials : Metamaterials
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Metamaterials

History
Original Manuscript: August 5, 2009
Revised Manuscript: August 31, 2009
Manuscript Accepted: September 24, 2009
Published: September 30, 2009

Citation
Oliver Paul, René Beigang, and Marco Rahm, "Highly selective terahertz bandpass filters based on trapped mode excitation," Opt. Express 17, 18590-18595 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18590


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. D. Veselago, "The electrodynamics of substances with simultaneously negative values of e and m," Soviet Physics Uspekhi 10, 509-514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  4. J. Li and J. B. Pendry, "Hiding under the Carpet: A New Strategy for Cloaking," Phys. Rev. Lett. 101, 203901 (2008). [CrossRef]
  5. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, "Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies," Opt. Express 17(1), 136-149 (2009). [CrossRef]
  6. W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, "Active terahertz metamaterial devices," Nature 444, 597 (2006). [CrossRef] [PubMed]
  7. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photonics 3, 148 (2009). [CrossRef]
  8. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, "A spatial light modulator for terahertz beams," Appl. Phys. Lett. 94, 213511 (2009). [CrossRef]
  9. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry," Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-Induced Transparency in Metamaterials," Phys. Rev. Lett. 101, 047401 (2008).
  11. N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, "Metamaterial Analog of Electromagnetically Induced Transparency," Phys. Rev. Lett. 101, 253903 (2008). [CrossRef]
  12. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency," Phys. Rev. Lett. 102, 053901 (2009). [CrossRef]
  13. N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009). [CrossRef] [PubMed]
  14. S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107-1110 (1990). [CrossRef] [PubMed]
  15. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  16. B. A. Munk, Frequency Selective Surfaces: Theory and Design. (New York: Wiley-Interscience, 2000). [CrossRef]
  17. N. Behdad and K. Sarabandi, "A Frequency Selective Surface With Miniaturized Elements," IEEE Transactions on Antennas and Propagation 55(5), 1239-1245 (2007).
  18. A. Mackay, "Proof of polarisation independence and nonexistence of crosspolar terms for targets presenting nfold (n > 2) rotational symmetry with special reference to frequency-selective surfaces," Electron. Lett. 25(24), 1624-1625 (1989). [CrossRef]
  19. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express 16(9), 6736-6744 (2008). [CrossRef]
  20. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited