OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18596–18605

Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser

Yu-Shan Juan and Fan-Yi Lin  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18596-18605 (2009)
http://dx.doi.org/10.1364/OE.17.018596


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have demonstrated and characterized the generation of ultra broadband microwave frequency combs with an optical pulse-injected semiconductor laser. Through optical pulse injection, the microwave frequency combs generated in the slave laser (SL) have bandwidths greater than 20 GHz within a ±5 dB amplitude variation, which is almost 3-fold of the 7 GHz relaxation oscillation frequency of the laser used. The line spacing of the comb is tunable from 990 MHz to 2.6 GHz, determined by the repetition frequency of the injection optical pulses produced by the master laser (ML) with optoelectronic feedback. At an offset frequency of 200 kHz, a single sideband (SSB) phase noise of -60 dBc/kHz (-90 dBc/Hz estimated) in the 1 st harmonic is measured while a noise suppression relative to the injected regular pulsing state of the ML of more than 25 dB in the 17th harmonic is achieved. A pulsewidth of 29 ps and a rms timing jitter of 18.7 ps are obtained in the time domain for the microwave frequency comb generated. Further stabilization is realized by modulating the ML at the fundamental frequency of the injected regular pulsing state. The feasibility of utilizing the generated microwave frequency comb in frequency conversion and signal broadcasting is also explored. The conversion gain of each channel increases linearly as the signal power increases with a ratio of about 0.81 dB/dBm.

© 2009 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(350.4010) Other areas of optics : Microwaves

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 13, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: September 29, 2009
Published: September 30, 2009

Citation
Yu-Shan Juan and Fan-Yi Lin, "Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser," Opt. Express 17, 18596-18605 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997). [CrossRef]
  2. A. Hohl and A. Gavrielides, "Bifurcation cascade in a semiconductor laser subject to optical feedback," Phys. Rev. Lett. 82, 1148-1151 (1999). [CrossRef]
  3. S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001). [CrossRef]
  4. S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008). [CrossRef]
  5. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005). [CrossRef] [PubMed]
  6. T. Yoshino, M. Nara, S. Mnatzakanian, B. S. Lee, and T. C. Strand, "Laser diode feedback interferometer for stabilization and displacement measurements," Appl. Opt. 26, 892-897 (1987). [CrossRef] [PubMed]
  7. S. K. Hwang, H. F. Chen, and C. T. Lin, "All-optical frequency conversion using nonlinear dynamics of semiconductor lasers," Opt. Lett. 34, 812-814 (2009). [CrossRef] [PubMed]
  8. F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004). [CrossRef]
  9. F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron. 40, 815-820 (2004). [CrossRef]
  10. W.W. Chow and S. Wieczorek, "Using chaos for remote sensing of laser radiation," Opt. Express. 17, 7491-7504 (2009). [CrossRef] [PubMed]
  11. S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007). [CrossRef] [PubMed]
  12. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinear broadened phase-modulated continuouswave laser frequency combs characterized using DPSK decoding," Opt. Express 16, 2520-2527 (2008). [CrossRef] [PubMed]
  13. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999). [CrossRef]
  14. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008). [CrossRef]
  15. H. Y. Ryu, H. S. Moon, and H. S. Suh, "Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding," Opt. Express 15, 11396-11401 (2007). [CrossRef] [PubMed]
  16. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009). [CrossRef]
  17. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009). [CrossRef]
  18. Y. S. Juan and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009). [CrossRef] [PubMed]
  19. For example, Picosecond Pulse Labs model 7112 comb generator.
  20. T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).
  21. N. Schunk and K. Petermann, "Noise analysis of injection-locked semiconductor injection lasers," IEEE J. Quantum Electron. 22, 642-650 (1986). [CrossRef]
  22. From http://www.eu.anritsu.com/files/11410-00344.pdf
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for selfoscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited