OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18630–18637

Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers

Amiel A. Ishaaya, Christopher J. Hensley, Bonggu Shim, Samuel Schrauth, Karl W. Koch, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18630-18637 (2009)
http://dx.doi.org/10.1364/OE.17.018630


View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate extremely efficient excitation of linearly-, radially-, and azimuthally-polarized modes in a hollow-core photonic band-gap fiber with femtosecond laser pulses. We achieve coupling efficiencies as high as 98% with linearly polarized input Gaussian beams and with high-power pulses we obtain peak intensities greater than 1014 W/cm2 inside and transmitted through the fiber. With radially polarized pulses, we achieve 91% total transmission through the fiber while maintaining the polarization state. Alternatively with azimuthally-polarized pulses, the mode is degraded in the fiber, and the pure polarization state is not maintained.

© 2009 OSA

OCIS Codes
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 20, 2009
Manuscript Accepted: September 18, 2009
Published: September 30, 2009

Citation
Amiel A. Ishaaya, Christopher J. Hensley, Bonggu Shim, Samuel Schrauth, Karl W. Koch, and Alexander L. Gaeta, "Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers," Opt. Express 17, 18630-18637 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18630


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  2. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  4. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13(16), 6153–6159 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6153 . [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-12-17-4080 . [CrossRef] [PubMed]
  6. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-13-26-10475 . [CrossRef] [PubMed]
  7. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005). [CrossRef] [PubMed]
  8. F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-13-15-5694 . [CrossRef] [PubMed]
  9. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006). [CrossRef] [PubMed]
  10. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  11. S. O. Konorov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, “Self-channeling of subgigawatt femtosecond laser pulses in a ground-state waveguide induced in the hollow core of a photonic crystal fiber,” Opt. Lett. 29(13), 1521–1523 (2004). [CrossRef] [PubMed]
  12. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-8-1477 . [CrossRef] [PubMed]
  13. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St. J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?id=78966 . [CrossRef] [PubMed]
  14. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers,” Proc. SPIE 5618, 30 (2004). [CrossRef]
  15. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007). [CrossRef]
  16. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  17. M. O. Scully, “A simple laser linac,” Appl. Phys. B 51(3), 238–241 (1990). [CrossRef]
  18. E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46(10), 6640–6653 (1992). [CrossRef] [PubMed]
  19. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  20. D. Pohl, “Self-focusing of TE01 and TM01 light beams: influence of longitudinal field components,” Phys. Rev. A 5(4), 1906–1909 (1972). [CrossRef]
  21. J. W. Haus, Z. Mozumder, and Q. Zhan, “Azimuthal modulation instability for a cylindrically polarized wave in a nonlinear Kerr medium,” Opt. Express 14(11), 4757–4764 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-14-11-4757 . [CrossRef] [PubMed]
  22. A. A. Ishaaya, L. T. Vuong, T. D. Grow, and A. L. Gaeta, “Self-focusing dynamics of polarization vortices in Kerr media,” Opt. Lett. 33(1), 13–15 (2008). [CrossRef]
  23. L. T. Vuong, A. A. Ishaaya, T. D. Grow, A. L. Gaeta, and E. R. Eliel, “Orbital angular momentum switching of optical vortices,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FThP3.
  24. A. Ciattoni, B. Crosignani, P. Di Porto, and A. Yariv, “Azimuthally polarized spatial dark solitons: exact solutions of Maxwell’s equations in a Kerr medium,” Phys. Rev. Lett. 94(7), 073902 (2005). [CrossRef] [PubMed]
  25. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234 (1990). [CrossRef] [PubMed]
  26. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322 (2000). [CrossRef]
  27. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003). [CrossRef] [PubMed]
  28. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007). [CrossRef] [PubMed]
  29. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948 (1996). [CrossRef] [PubMed]
  30. E. Churin, J. Hosfeld, and T. Tschudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99(1-2), 13–17 (1993). [CrossRef]
  31. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002). [CrossRef]
  32. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005). [CrossRef]
  33. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004). [CrossRef]
  34. J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31(20), 2969–2971 (2006). [CrossRef] [PubMed]
  35. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-22-17972 . [CrossRef] [PubMed]
  36. D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited