OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18651–18658

An optical modulator based on a single strongly coupled quantum dot - cavity system in a p-i-n junction

Dirk Englund, Andrei Faraon, Arka Majumdar, Nick Stoltz, Pierre Petroff, and Jelena Vučković  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18651-18658 (2009)
http://dx.doi.org/10.1364/OE.17.018651


View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an optical modulator based on a single quantum dot strongly coupled to a photonic crystal cavity. A vertical p-i-n junction is used to tune the quantum dot and thereby modulate the cavity transmission, with a measured instrument-limited response time of 13 ns. A modulator based on a single quantum dot promises operation at high bandwidth and low power.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(270.5580) Quantum optics : Quantum electrodynamics
(250.6715) Optoelectronics : Switching

ToC Category:
Integrated Optics

History
Original Manuscript: July 16, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 24, 2009
Published: October 1, 2009

Citation
Dirk Englund, Andrei Faraon, Arka Majumdar, Nick Stoltz, Pierre Petroff, and Jelena Vuckovic, "An optical modulator based on a single strongly coupled quantum dot - cavity system in a p-i-n junction," Opt. Express 17, 18651-18658 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166 - 1185 (2009). [CrossRef]
  2. J. Meindl, "Interconnect opportunities for gigascale integration," Micro. IEEE 23(3), 28-35 (2003). [CrossRef]
  3. M. Lipson, "Guiding, modulating, and emitting light on Silicon-challenges and opportunities," J. Lightwave Technol. 23(12), 4222-4238 (2005). [CrossRef]
  4. Y. Chang and L. A. Coldren, "Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 15(3), 1-12 (2009).
  5. D. Englund, H. Altug, B. Ellis, and J. Vuckovic, "Ultrafast Photonic Crystal Lasers," Laser Photon. Rev. 2, 1863-1880 (2008). [CrossRef]
  6. L. Chrostowski, X. Zhao, and C. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54(2), 788-796 (Feb. 2006). [CrossRef]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435(7040), 325-327 (2005). [CrossRef]
  8. H.-W. Chen, Y. hao Kuo, and J. E. Bowers, "High speed hybrid silicon evanescent Mach-Zehnder modulator and switch," Opt. Express 16(25), 20571-20576 (2008). [CrossRef]
  9. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nat. Photonics 2, 242 - 246 (2008). [CrossRef]
  10. Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5μm radius," Opt. Express 16(6), 4309-4315 (2008). [CrossRef]
  11. T. Yoshimatsu, S. Kodama, K. Yoshino, and H. Ito, "100-gb/s error-free wavelength conversion with a monolithic optical gate integrating a photodiode and electroabsorption modulator," IEEE Photon. Technol. Lett. 17(11), 2367-2369 (2005). [CrossRef] [PubMed]
  12. J. Roth, O. Fidaner, E. Edwards, R. Schaevitz, Y.-H. Kuo, N. Herman, T. Kamins, J. Harris, and D. Miller, "Cband side-entry ge quantum-well electroabsorption modulator on SOIi operating at 1 V swing," Electron Lett. 44(1), 49-50 (2008). [CrossRef]
  13. A. Agarwal and J. H. Lang, Foundations of Analog and Digital Electronic Circuits (Morgan Kaufmann, 2005). [PubMed]
  14. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J . Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450(6), 857-61 (2007). [CrossRef]
  15. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdiskquantum dot system," Nature 450, 862-865 (2007). [CrossRef] [PubMed]
  16. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013,904 (2005). [CrossRef] [PubMed]
  17. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  18. M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, "High-brightness single photon source from a quantum dot in a directional-emission nanocavity," Opt. Express 17(17), 14618-14626 (2009). [CrossRef] [PubMed]
  19. H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, p.1444-7 (2004). [CrossRef]
  20. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Bohm, P. Lodahl, M.-C. Amann, and J. J. Finley, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11(2), 023,034 (11pp) (2009).
  21. D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, "Electrically controlled modulation in a photonic crystal nanocavity," Opt. Express 17(18), 15,409-15,419 (2009). [PubMed]
  22. M. B. Yairi, H. V. Demir, P. B. Atanackovic, and D. A. B. Miller, "Large-Signal Response of p-i-n Photodetectors using Short Pulses with Small Spot Sizes," IEEE J. Quantum Electron. 40(2), 143-151 (2004). [CrossRef]
  23. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, "Generation and transfer of single photons on a photonic crystal chip," Opt. Express 15, 5550-8 (2007). [CrossRef] [PubMed]
  24. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, "Dipole induced transparency inwaveguide coupled photonic crystalcavities," Opt. Express 16(16), 12,154-12,162 (2008).
  25. M. Bass, ed., Fiber Optics Handbook (Mc Graw - Hill, 2002).
  26. A. I. Bachir, N. Durisic, B. Hebert, P. Grutter, and P. W. Wiseman, "Characterization of blinking dynamics in quantum dot ensembles using image correlation spectroscopy," J. Appl. Phys. 99(6), 064503 (2006). [CrossRef]
  27. D. Englund, H. Altug, and J. Vuckovic, "Low-Threshold Surface-Passivated Photonic Crystal Nanocavity Laser," Appl. Phys. Lett. 91, 071,124 (2007). [CrossRef]
  28. R. Schmidt, U. Scholz, M. Vitzethum, R. Fix, C. Metzner, P. Kailuweit, D. Reuter, A. Wieck, M. C. H¨ubner, S. Stufler, A. Zrenner, S. Malzer, and G. H. D¨ohler, "Fabrication of genuine single-quantum-dot light-emitting diodes," Appl. Phys. Lett. 88(12), 121115 (pages 3) (2006). [CrossRef]
  29. E. Waks and J. Vuckovi´, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96-153601, (2006).
  30. A. Auffeves-Garnier, C. Simon, J. Gerard, and J.-P. Poizat, "Giant optical nonlinearity induced by a single twolevel system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053,823 (2007). [CrossRef]
  31. X. Chen, Y.-S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, "Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator," Opt. Lett. 34(5), 602-604 (2009). [CrossRef]
  32. A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, "Fast Electrical Control of a Quantum Dot Strongly Coupled to a Nano-resonator," arXiv:0906.0751v1 [quant-ph] (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited