OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18669–18675

Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18669-18675 (2009)
http://dx.doi.org/10.1364/OE.17.018669


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, sensitivity to strain and temperature of a sensor relying on modal interferometry in hollow-core photonic crystal fibers is studied. The sensing structure is simply a piece of hollow-core fiber connected in both ends to standard single mode fiber. An interference pattern that is associated to the interference of light that propagates in the hollow core fundamental mode with light that propagates in other modes is observed. The phase of this interference pattern changes with the measurand interaction, which is the basis for considering this structure for sensing. The phase recovery is performed using a white light interferometric technique. Resolutions of ± 1.4µε and ± 0.2°C were achieved for strain and temperature, respectively. It was also found that the fiber structure is not sensitive to curvature.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.3990) Optical devices : Micro-optical devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: August 17, 2009
Revised Manuscript: September 26, 2009
Manuscript Accepted: September 27, 2009
Published: October 1, 2009

Citation
S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, "Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement," Opt. Express 17, 18669-18675 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14(21), 9576–9583 (2006). [CrossRef] [PubMed]
  2. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001). [CrossRef]
  3. C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008). [CrossRef]
  4. W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005). [CrossRef]
  5. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003). [CrossRef] [PubMed]
  6. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008). [CrossRef] [PubMed]
  7. D. Ethonlagi and M. Zavrsnik, “Fiber-optic microbend sensor structure,” Opt. Lett. 22(11), 837–839 (1997). [CrossRef] [PubMed]
  8. E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007). [CrossRef]
  9. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and Temperature Sensing Characteristics of Single-Mode-Multimode-Single-Mode Structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009), http://apps.isiknowledge.com/full_record.do?product=UA&colname=WOS&search_mode=CitingArticles&qid=3&SID=P1o7dcma8l7khK142BM&page=1&doc=1 . [CrossRef]
  10. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006). [CrossRef]
  11. Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005). [CrossRef]
  12. J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006). [CrossRef]
  13. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007). [CrossRef] [PubMed]
  14. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  15. Y. Jung, H. Y. Choi, M. J. Kim, B. H. Lee, and K. Oh, “Ultra-compact Mach-Zehnder interferometer using hollow optical fiber for high temperature sensing,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA10.
  16. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004). [CrossRef]
  17. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  18. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007). [CrossRef]
  19. Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996). [CrossRef]
  20. P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited