OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18681–18692

Latent light-assisted poling of LiNbO3

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18681-18692 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1699 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The observation of latent light-assisted poling (LAP) in lithium niobate single crystals is reported. More specifically, the nucleation field is reduced and remains reduced for an extended time period (up to several hours) after irradiation with ultrafast (~150 fs) laser light at a wavelength of 400 nm. The maximum nucleation field reduction measured using latent-LAP (62%) was significantly higher in comparison with regular non-time-delayed LAP (41%) under identical irradiation conditions in undoped congruent lithium niobate crystals. No latent-LAP effect was observed in MgO-doped crystals for the experimental conditions used, despite the strong effect observed using regular LAP. The latent-LAP effect is attributed to the formation of a slowly decaying photo-induced space-charge distribution which assists local ferroelectric domain nucleation. The dynamics of latent-LAP are compared with the dynamics of photorefractive grating decay, recorded in lithium niobate crystals of different doping, confirming the space charge hypothesis.

© 2009 OSA

OCIS Codes
(160.2260) Materials : Ferroelectrics
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(140.3538) Lasers and laser optics : Lasers, pulsed
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: July 7, 2009
Revised Manuscript: August 20, 2009
Manuscript Accepted: August 23, 2009
Published: October 1, 2009

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, "Latent light-assisted poling of LiNbO3," Opt. Express 17, 18681-18692 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004). http://dx.doi.org/10.1002/pssa.200303911
  2. I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 . [CrossRef]
  3. A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 . [CrossRef]
  4. R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 . [CrossRef]
  5. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 . [CrossRef]
  6. M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys. 84(4), 2199–2206 (1998), http://link.aip.org/link/?JAP/84/2199/1 . [CrossRef]
  7. W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 . [CrossRef]
  8. H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 . [CrossRef]
  9. M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 . [CrossRef]
  10. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 . [CrossRef]
  11. V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004), http://link.aip.org/link/?APL/84/3987/1 . [CrossRef]
  12. M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 . [CrossRef]
  13. C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 . [CrossRef]
  14. J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000), http://link.aip.org/link/?APL/77/2391/1 . [CrossRef]
  15. A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content . [CrossRef]
  16. Ya. Vladimir, Shur, “Correlated Nucleation and Self-Organized Kinetics of Ferroelectric Domains,” in Nucleation Theory and Applications, W. P. S. Dr. Jürn, ed. (2005), pp. 178–214. http://dx.doi.org/10.1002/3527604790.ch6
  17. W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 . [CrossRef]
  18. B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 . [CrossRef]
  19. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-11-1366 . [CrossRef] [PubMed]
  20. L. Arizmendi and F. Agulló-López, “LiNbO3: A paradigm for photorefractive materials,” MRS Bull. 19, 32–38 (1994).
  21. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=ol-18-11-915 . [CrossRef] [PubMed]
  22. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78(15), 2944–2947 (1997), http://prola.aps.org/abstract/PRL/v78/i15/p2944_1 . [CrossRef]
  23. F. Jermann, M. Simon, and E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12(11), 2066–2070 (1995), http://josab.osa.org/abstract.cfm?URI=josab-12-11-2066 . [CrossRef]
  24. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 . [CrossRef]
  25. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 . [CrossRef]
  26. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 . [CrossRef]
  27. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D Appl. Phys. 18(10), 2059–2071 (1985), http://www.iop.org/EJ/abstract/0022-3727/18/10/016 . [CrossRef]
  28. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42(6), 2219–2230 (1971), http://link.aip.org/link/?JAPIAU/42/2219/1 . [CrossRef]
  29. C. E. Valdivia, “Light-induced ferroelectric domain engineering in lithium niobate & lithium tantalate,” (PhD thesis, University of Southampton, Southampton, 2007). http://www.orc.soton.ac.uk/viewpublication.html?pid=3846

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited