OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18693–18702

Spin entanglement, decoherence and Bohm’s EPR paradox

E. G. Cavalcanti, P. D. Drummond, H. A. Bachor, and M. D. Reid  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18693-18702 (2009)
http://dx.doi.org/10.1364/OE.17.018693


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm’s spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies η>1/3 and η>2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

© 2009 Optical Society of America

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 10, 2009
Revised Manuscript: September 18, 2009
Manuscript Accepted: September 19, 2009
Published: October 1, 2009

Citation
E. G. Cavalcanti, P. D. Drummond, H. A. Bachor, and M. D. Reid, "Spin entanglement, decoherence and Bohm’s EPR paradox," Opt. Express 17, 18693-18702 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?," Phys. Rev. 47, 777-780 (1935). [CrossRef]
  2. J. S. Bell, "On the Einstein-Podolsky-Rosen paradox," Physics 1, 195-201 (1965).
  3. A. Peres, "Separability Criterion for Density Matrices," Phys. Rev. Lett. 77, 1413-1415 (1996). [CrossRef] [PubMed]
  4. M. Horodecki, P. Horodecki, and R. Horodecki, "Mixed-State Entanglement and Distillation: Is there a "Bound" Entanglement in Nature?," Phys. Rev. Lett. 80, 5239-5242 (1998). [CrossRef]
  5. K. Wooters, "Entanglement of Formation of an Arbitrary State of Two Qubits," Phys. Rev. Lett. 80, 2245-2248 (1998). [CrossRef]
  6. G. Vidal and R. F. Werner, "Computable measure of entanglement," Phys. Rev. A 65, 032314 (2002). [CrossRef]
  7. T. Yu and J. H. Eberly, "Sudden Death of Entanglement," Science 323, 598-601, (2009). [CrossRef] [PubMed]
  8. W. H. Zurek, "Decoherence, einselection, and the quantum origins of the classical," Rev. Mod. Phys. 75, 715-775 (2003). [CrossRef]
  9. T. Yu and J. H. Eberly, "Finite-Time Disentanglement Via Spontaneous Emission," Phys. Rev. Lett. 93, 140404 (2004). [CrossRef] [PubMed]
  10. Z. Ficek and R. Tanas, "Dark periods and revivals of entanglement in a two-qubit system," Phys. Rev. A 74, 024304 (2006). [CrossRef]
  11. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, "Environment-Induced Sudden Death of Entanglement," Science 316, 579-582 (2007). [CrossRef] [PubMed]
  12. A. M. Steane, "Error Correcting Codes in Quantum Theory," Phys. Rev. Lett. 77, 793-797 (1996). [CrossRef] [PubMed]
  13. C. H. Bennett et al., "Mixed-state entanglement and quantum error correction," Phys. Rev. A 54, 3824-3851 (1996). [CrossRef] [PubMed]
  14. P. W. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A 52, R2493- R2496 (1995). [CrossRef] [PubMed]
  15. D. Bohm, Quantum Theory (Englewood Cliffs, NJ, Prentice-Hall, 1951).
  16. J. Larsson, "Modeling the singlet state with local variables," Phys. Lett. A 256, 245-252 (1999). [CrossRef]
  17. R. F. Werner, "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model," Phys. Rev. A 40, 4277-4281 (1989). [CrossRef] [PubMed]
  18. M. Barberi, F. De Martini, G. Di Nepi, and P. Matalon, "Generation and Characterization of Werner States and Maximally Entangled Mixed States by a Universal Source of Entanglement," Phys. Rev. Lett. 92, 177901 (2004). [CrossRef]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  20. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007). [CrossRef] [PubMed]
  21. A. Garg and N. D. Mermin, "Detector inefficiencies in the Einstein-Podolsky-Rosen experiment," Phys. Rev. D 35, 3831-3835 (1987). [CrossRef]
  22. B. Yurke and D. Stoler, "Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion," Phys. Rev. Lett. 57, 13-16 (1986). [CrossRef] [PubMed]
  23. P. Skwara, H. Kampermann, M. Kleinmann, and D. Bruss, "Entanglement witnesses and a loophole problem," Phys. Rev. A 76, 012312 (2007). [CrossRef]
  24. A. Aspect, J. Dalibard, and G. Roger, "Experimental Test of Bell’s Inequalities using Time- Varying Analyzers," Phys. Rev. Lett. 49, 1804-1807 (1982), among others. [CrossRef]
  25. H. F. Hofmann and S. Takeuchi, "Violation of local uncertainty relations as a signature of entanglement," Phys. Rev. A 68, 032103 (2003). [CrossRef]
  26. M. D. Reid, "Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification," Phys. Rev. A 40, 913-923 (1989). [CrossRef] [PubMed]
  27. E. G. Cavalcanti and M. D. Reid, "Uncertainty relations for the realisation of macroscopic quantum superpositions and EPR paradoxes," J. Mod. Opt. 54, 2373-2380 (2007). [CrossRef]
  28. G. Toth, "Entanglement detection in optical lattices of bosonic atoms with collective measurements," Phys. Rev. A 69, 052327 (2004). [CrossRef]
  29. N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuousvariable polarization entanglement," Phys. Rev. A 65, 052306 (2002). [CrossRef]
  30. W. P. Bowen, R. Schnabel, H.-A. Bachor, and P. K. Lam, "Polarization Squeezing of Continuous Variable Stokes Parameters," Phys. Rev. Lett. 88, 093601 (2002). [CrossRef] [PubMed]
  31. W. H. Furry, "Note on the Quantum-Mechanical Theory of Measurement," Phys. Rev. 49, 393-399 (1936). [CrossRef]
  32. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum Superpositions of a Mirror," Phys. Rev. Lett. 91, 130401 (2003). [CrossRef] [PubMed]
  33. N. D. Mermin, "Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s," Phys. Rev. D 22, 356-361 (1980). [CrossRef]
  34. P. D. Drummond, "Violations of Bell’s Inequality in Cooperative States," Phys. Rev. Lett. 50, 1407-1410 (1983). [CrossRef]
  35. M. D. Reid, W. J. Munro, and F. De Martini, "Violation of multiparticle Bell inequalities for low- and high-flux parametric amplification using both vacuum and entangled input states," Phys. Rev. A 66, 033801 (2002). [CrossRef]
  36. H. M. Wiseman, S. J. Jones, and A. C. Doherty, "Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox," Phys. Rev. Lett. 98, 140402 (2007). [CrossRef] [PubMed]
  37. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, "Bell Inequalities for Arbitrarily High-Dimensional Systems," Phys. Rev. Lett. 88, 040404 (2002). [CrossRef] [PubMed]
  38. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, "Experimental Investigation of Criteria for Continuous Variable Entanglement," Phys. Rev. Lett. 90, 043601 (2003). [CrossRef] [PubMed]
  39. B. Julsgaard, A. Kozhekin, and E. S. Polzik, "Experimental long-lived entanglement of two macroscopic objects," Nature 413, 400-403(2001). [CrossRef] [PubMed]
  40. J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, "Squeezing and entanglement in a Bose-Einstein condensate," Nature 455, 1216-1219 (2008). [PubMed]
  41. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Conditional preparation of single photons for scalable quantum-optical networking," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
  42. A. E. Lita, A. J. Miller, and S. W. Nam, "Counting near-infrared single-photons with 95% efficiency," Opt. Express 16, 3032-3040 (2008). [CrossRef] [PubMed]
  43. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, "Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement," Opt. Express 15, 4321-4327 (2007). [CrossRef] [PubMed]
  44. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, and R. Schnabel, "Observation of Squeezed Light with 10-dB Quantum-Noise Reduction," Phys. Rev. Lett. 100, 033602 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited