OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18745–18759

Polarization control of single photon quantum orbital angular momentum states

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18745-18759 (2009)
http://dx.doi.org/10.1364/OE.17.018745


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The orbital angular momentum of photons, being defined in an infinite-dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called “q-plate”, which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also have access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum m degree of freedom within the subspaces of |m|=2ħ and |m|=4ħ per photon.

© 2009 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: July 2, 2009
Revised Manuscript: September 2, 2009
Manuscript Accepted: September 7, 2009
Published: October 2, 2009

Citation
E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, "Polarization control of single photon quantum orbital angular momentum states," Opt. Express 17, 18745-18759 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18745


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woederman, "Spin-orbit coupling in free-space Laguerre-Gaussian light beams," Phys. Rev. A 45, 8185 (1992). [CrossRef] [PubMed]
  2. G. Molina-Terriza, J. P. Torres, and L. Torner, "Twisted photons," Nature Phys. 3, 305-310 (2007). [CrossRef]
  3. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature(London) 412, 313-316 (2001). [CrossRef]
  4. G. Molina-Terriza, J. P. Torres, and L. Torner, "Orbital angular momentum of photons in noncollinear parametric downconversion," Opt. Commun. 228, 155-160 (2003). [CrossRef]
  5. A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, "Concentration of Higher Dimensional Entanglement: Qutrits of Photon Orbital Angular Momentum," Phys. Rev. Lett. 91, 227902 (2003). [CrossRef] [PubMed]
  6. H. Arnaut, and G. A. Barbosa, "Orbital and Intrinsic Angular Momentum of Single Photons and Entangled Pairs of Photons Generated by Parametric Down-Conversion," Phys. Rev. Lett. 85, 286-289 (2000) [CrossRef] [PubMed]
  7. S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and L. Allen, "Observation of quantum entanglement using spatial light modulators," Phys. Rev. A 65, 033823 (2002) [CrossRef]
  8. M. Stutz, S. Grblacher, T. Jennewein, and A. Zeilinger, "How to create and detect N-dimensional entangled photons with an active phase hologram," Appl. Phys. Lett. 90, 261114 (2007). [CrossRef]
  9. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, "Observation of quantum entanglement using spatial light modulators," Phys. Rev. Lett. 93, 053601 (2004). [CrossRef] [PubMed]
  10. A. Vaziri, G. Weihs, and A. Zeilinger, "Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments," Phys. Rev. Lett. 89, 240401 (2002) [CrossRef] [PubMed]
  11. A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, "Nonlocality of high-dimensional two-photon orbital angular momentum states," Phys. Rev. A 72, 052114 (2005). [CrossRef]
  12. S. S. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. t Hooft, and J. P. Woerdman, "Experimental Demonstration of Fractional Orbital Angular Momentum Entanglement of Two Photons," Phys. Rev. Lett. 95, 240501 (2005). [CrossRef] [PubMed]
  13. S. S. Oemrawsingh, J. A. de Jong, X. Ma, A. Aiello, E. R. Eliel, G. W. t Hooft, and J. P. Woerdman, "Highdimensional mode analyzers for spatial quantum entanglement," Phys. Rev. A 73, 032339 (2006). [CrossRef]
  14. J. T. Barreiro, N. K. Langford, N. A. Peters, and P.G. Kwiat, "Generation of Hyperentangled Photon Pairs," Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  15. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, "Beating the channel capacity limit for linear photonic superdense coding," Nature Phys. 4, 282-286 (2008). [CrossRef]
  16. L. Chen and W. She, "Increasing Shannon dimensionality by hyperentanglement of spin and fractional orbital angular momentum," Opt. Lett. 34, 1855-1857 (2009). [CrossRef] [PubMed]
  17. L. Marrucci, C. Manzo, D. and Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  18. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, "Quantum information transfer from spin to orbital angular momentum of photons," Phys. Rev. Lett. 103, 013601 (2009). [CrossRef] [PubMed]
  19. J. B. Gotte, K. OHolleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, "Light beams with fractional orbital angular momentum and their vortex structure," Opt. Express 16, 993-1006 (2008) [CrossRef] [PubMed]
  20. L. Marrucci, C. Manzo, and D. Paparo, "Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation," Appl. Phys. Lett. 88, 221102 (2006). [CrossRef]
  21. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, "Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates," Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  22. G. F. Calvo, and A. Picon, "Spin-induced angular momentum switching," Opt. Lett. 32, 838-840 (2007) [CrossRef] [PubMed]
  23. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, "Light propagation in a birefringent plate with topological charge," Opt. Lett. 34, 1225-1227 (2009). [CrossRef] [PubMed]
  24. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, "Hypergeometric-Gaussian Modes," Opt. Lett. 32, 3053-3055 (2007). [CrossRef] [PubMed]
  25. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337 (1995). [CrossRef] [PubMed]
  26. M. J. Padgett, and J. Courtial, "New high-intensity source of polarization-entangled photon pairs," Opt. Lett. 24, 430 (1999). [CrossRef]
  27. We note that, although the optical layout is a Mach-Zehnder interferometer, the optical path phase difference between the two arms of the interferometer is only affecting the polarization state of the single output obtained after the final PBS, while it does not act on the PBS exit mode and on the OAM final state. The final polarization may therefore turn elliptical if this phase difference is not well controlled. However, the H polarization can be easily restored by suitable wave-plates, as long as it is uniform.
  28. M. Fiorentino, and F. N. C. Wong, "Deterministic Controlled-NOT Gate For Single-Photon Two-Qubit Quantum Logic," Phys. Rev. Lett. 93, 070502 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited