OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18826–18835

Confined collective excitations of self-standing and supported planar periodic particle arrays

X. M. Bendaña and F. J. García de Abajo  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18826-18835 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We find the conditions for the existence of trapped modes in planar periodic particle arrays. Confined excitations of TE and TM symmetry are observed in symmetric environments, originating in lattice resonances that are signalled by the onset of new diffraction beams. This mechanism of mode formation is shown to be inhibited by the presence of a dielectric interface in an asymmetric configuration. Modes can still exist above a threshold finite distance from the interface. Both rigorous numerical simulation and analytical modeling are used to elucidate the origin and systematics of this unexpected difference in the behavior of trapped modes in self-standing and supported particle arrays.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: July 31, 2009
Revised Manuscript: September 18, 2009
Manuscript Accepted: September 18, 2009
Published: October 2, 2009

X. M. Bendaña and F. J. García de Abajo, "Confined collective excitations of self-standing and supported planar periodic particle arrays," Opt. Express 17, 18826-18835 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Liz-Marzán, "Tailoring surface plasmon through the morphology and assembly of metal nanoparticles," Langmuir 22, 32-41 (2006). [CrossRef]
  2. C. Didiot, S. Pons, B. Kierren, Y. Fagot-Revurat, and D. Malterre, "Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures," Nat. Nanotech. 2, 617-621 (2007). [CrossRef]
  3. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116,805 (2008). [CrossRef]
  4. M. Danckwerts and L. Novotny, "Optical frequency mixing at coupled gold nanoparticles," Phys. Rev. Lett. 98, 026,104 (2007). [CrossRef]
  5. L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, "Zeptomol Detection through controlled ultrasensitive surface-enhanced Raman scattering," J. Am. Chem. Soc. 131, 4616-4618 (2009). [CrossRef] [PubMed]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  8. S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow Plasmon lineshapes," J. Chem. Phys. 120, 10,871-10,875 (2004). [CrossRef]
  9. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, "Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography," Nano Lett. 5, 1065-1070 (2005). [CrossRef] [PubMed]
  10. B. Auguie and W. L. Barnes, "Collective resonances in gold nanoparticle Arrays," Phys. Rev. Lett. 101, 143,902 (2008). [CrossRef]
  11. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016,608 (2005). [CrossRef]
  12. F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  13. S. A. Podosenov, A. A. Sokolov, and S. V. Al’betkov, "Method for determining the electric and magnetic polarizability of arbitrarily shaped conducting bodies," IEEE Trans. Electr. Compatibility 39, 1-10 (1997). [CrossRef]
  14. R. Gans, "The shape of ultra microscopic gold particles," Ann. Phys. (Leipzig) 37, 881-900 (1912).
  15. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  16. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  17. J. W. S. Rayleigh, "Note on the remarkable case of diffraction spectra described by Prof. Wood," Philos. Mag. 14, 60-65 (1907).
  18. We are concerned with the coefficient multiplying the zero-order reflected evanescent wave, normalized to the amplitude of an incident evanescent wave at the plane of the array.
  19. R. Ulrich and M. Tacke, "Submillimeter waveguiding on periodic metal structure," Appl. Phys. Lett. 22, 251-253 (1973). [CrossRef]
  20. N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: Frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998). [CrossRef]
  21. N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000). [CrossRef]
  22. R. Zengerle, "Light propagation in singly and doubly periodic planar waveguides," J. Mod. Opt. 34, 1589-1617 (1987). [CrossRef]
  23. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  24. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045,102 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited