OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18887–18893

Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask

M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18887-18893 (2009)
http://dx.doi.org/10.1364/OE.17.018887


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Fiber Bragg grating of 369 nm pitch was inscribed in a germanium-free double-clad ytterbium doped silica fiber using a femto-second pulse train at 400 nm wavelength and a phase mask. The photo-induced refractive index modulation of higher than 4×10−3 was obtained and the accompanying photo-induced losses were subsequently removed by thermal annealing, resulting in a low loss (<0.1dB), stable and high reflectivity (>40dB) FBG. Based on this FBG, a monolithic Ytterbium fiber laser operating at 1073 nm with slope efficiency of 71% and output power of 13W was demonstrated.

© 2009 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(140.3615) Lasers and laser optics : Lasers, ytterbium
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 30, 2009
Revised Manuscript: September 15, 2009
Manuscript Accepted: September 18, 2009
Published: September 5, 2009

Citation
M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, "Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask," Opt. Express 17, 18887-18893 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication,” J. Opt. Soc. Am. B 22(2), 354–361 (2005). [CrossRef]
  2. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. vol. 2008, Article ID 416251, 20 pages (2008)
  3. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007). [CrossRef] [PubMed]
  4. G. Androz, D. Faucher, M. Bernier, and R. Vallée, “Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings,” Opt. Lett. 32(10), 1302–1304 (2007). [CrossRef] [PubMed]
  5. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006). [CrossRef] [PubMed]
  6. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, and “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32(18), 2756–2758 (2007). [CrossRef] [PubMed]
  7. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004). [CrossRef]
  8. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32(11), 1486–1488 (2007). [CrossRef] [PubMed]
  9. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007). [CrossRef] [PubMed]
  10. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009). [CrossRef] [PubMed]
  11. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008). [CrossRef] [PubMed]
  12. D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997). [CrossRef]
  13. J. Jaspara, M. Andrejco, and D. DiGiovanni, “Effet of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (OSA, 2006), CTuQ5.
  14. M.-A. Lapointe, and M. Piché, “Linewidth of high-power fiber lasers,” Proc. of SPIE, Photonics North, (2009)
  15. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17(5), 3285–3290 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited