OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18894–18899

Generation of tunable picosecond pulses by pulse stacking in an Yb-fiber gain-assisted pulse stacker

Qiang Hao, Wenxue Li, Yao Li, Ming Yan, and Heping Zeng  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18894-18899 (2009)
http://dx.doi.org/10.1364/OE.17.018894


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the generation of tunable picosecond pulses of high repetition rate by pulse stacking in an Yb-fiber stacker that benefited from high optical gain, properly time delay and laser synchronization. The gain-assisted pulse stacker could be controlled for pulse shaping to produce tunable pulse duration from ps to sub-ns range by managing the intracavity dispersion and adjusting the time delay. The energy loss during the pulse shaping process was compensated by the gain of a 60-cm-long Yb-fiber pumped by a diode laser. The temporal profiles of the output pulses were measured by using a special cross-correlation technique. The duration of the stacked pulses could be tuned from 5 to 200 ps with a controllable time interval.

© 2009 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(320.5540) Ultrafast optics : Pulse shaping
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 26, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 25, 2009
Published: September 5, 2009

Citation
Qiang Hao, Wenxue Li, Yao Li, Ming Yan, and Heping Zeng, "Generation of tunable picosecond pulses by pulse stacking in an Yb-fiber gain-assisted pulse stacker," Opt. Express 17, 18894-18899 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Yang, Z. Z. Xu, Y. X. Leng, H. H. Lu, L. H. Lin, Z. Q. Zhang, R. X. Li, W. Q. Zhang, D. J. Yin, and B. Tang, “Multiterawatt laser system based on optical parametric chirped pulse amplification,” Opt. Lett. 27(13), 1135–1137 (2002). [CrossRef]
  2. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  3. Y. Tanaka, T. Hara, H. Kitamura, and T. Ishikawa, “Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses,” Rev. Sci. Instrum. 71(3), 1268–1274 (2000). [CrossRef]
  4. S. Yu. Kalmykov, L. M. Gorbunov, P. Mora, and G. Shvets, “Injection, trapping, and acceleration of electrons in a three-dimensional nonlinear laser wakefield,” Phys. Plasmas 13(11), 113102 (2006). [CrossRef]
  5. J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007). [CrossRef]
  6. J. D. Zuegel, S. Borneis, C. Barty, B. Legarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. Leblanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).
  7. D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72(8), 1224–1227 (1994). [CrossRef] [PubMed]
  8. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, P. Rohwetter, G Méjean, J. Yu, E Salmon, J Kasparian, R Ackermann, J Wolf, and L Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004). [CrossRef]
  9. M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20(9), 1047–1049 (1995). [CrossRef] [PubMed]
  10. D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24(12), 853–855 (1999). [CrossRef]
  11. I. Will and G. Klemz, “Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter,” Opt. Express 16(19), 14922–14937 (2008). [CrossRef] [PubMed]
  12. D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration,” Opt. Lett. 29(13), 1551–1553 (2004). [CrossRef] [PubMed]
  13. S. Costantino and O. E. Martínez, “Throughput limitations for the direct space-to-time pulse shaper,” J. Opt. Soc. Am. B 18(8), 1227–1230 (2001). [CrossRef]
  14. A. Sharan and D. Goswami, “Prospects of ultrafast pulse shaping,” Curr. Sci. 82, 30–37 (2002).
  15. M. Yan, W. Li, Q. Hao, Y. Li, and H. Zeng, “Square nanosecond Yb- and Er-doped fiber lasers passively synchronized to a Ti:sapphire laser based on cross-absorption modulation,” Opt. Lett. 34(13), 2018–2020 (2009). [CrossRef] [PubMed]
  16. Y. Kobayashi, X. Zhou, D. Yoshitomi, and K. Torizuka, “Passive timing synchronization between Ti:sapphire laser and Yb-doped fiber laser,” in Conference on Lasers and Electro-Optics, CML6 (2008).
  17. W. Li, Q. Hao, M. Yan, and H. Zeng, “Tunable flat-top nanosecond fiber laser oscillator and 280 W average power nanosecond Yb-doped fiber amplifier,” Opt. Express 17(12), 10113–10118 (2009). [CrossRef] [PubMed]
  18. T. Heupel, M. Weitz, and T. W. Hänsch, “Phase-coherent light pulses for atom optics and interferometry,” Opt. Lett. 22(22), 1719–1721 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited