OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18920–18933

Optimizing type-I polarization-entangled photons

Radhika Rangarajan, Michael Goggin, and Paul Kwiat  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18920-18933 (2009)
http://dx.doi.org/10.1364/OE.17.018920


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical quantum information processing needs ultra-bright sources of entangled photons, especially from synchronizable femtosecond lasers and low-cost cw-diode lasers. Decoherence due to timing information and spatial mode-dependent phase has traditionally limited the brightness of such sources. We report on a variety of methods to optimize type-I polarization-entangled sources — the combined use of different compensation techniques to engineer high-fidelity pulsed and cw-diode laser-pumped sources, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). Using spatial compensation, we show more than a 400-fold improvement in the phase flatness, which otherwise limits efficient collection of entangled photons from BiBO, and report the highest fidelity to date (99%) of any ultrafast polarization-entanglement source. Our numerical code, available on our website, can design optimal compensation crystals and simulate entanglement from a variety of type-I phasematched nonlinear crystals.

© 2009 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Quantum Optics

History
Original Manuscript: September 1, 2009
Revised Manuscript: September 27, 2009
Manuscript Accepted: September 30, 2009
Published: September 6, 2009

Citation
Radhika Rangarajan, Michael Goggin, and Paul Kwiat, "Optimizing type-I polarization-entangled photons," Opt. Express 17, 18920-18933 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970). [CrossRef]
  2. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007). [CrossRef] [PubMed]
  3. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006). [CrossRef] [PubMed]
  4. Downconversion can be realized in two ways: in type-I (type-II) phasematching an extraordinary polarized pump downconverts into two ordinary polarized photons (one ordinary polarized and one extraordinary polarized photon).
  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993). [CrossRef] [PubMed]
  6. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997). [CrossRef]
  7. C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007). [CrossRef]
  8. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005). [CrossRef] [PubMed]
  9. D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999). [CrossRef]
  10. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007). [CrossRef]
  11. L. E. Vincent, A. B. U'Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” to be published.
  12. D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70(9), 903–910 (2002). [CrossRef]
  13. B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009). [CrossRef]
  14. M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004). [CrossRef] [PubMed]
  15. J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74(1), 013802–013808 (2006). [CrossRef]
  16. Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003). [CrossRef]
  17. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314–032319 (2008). [CrossRef]
  18. B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004). [CrossRef]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  20. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999). [CrossRef]
  21. W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001). [CrossRef]
  22. A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).
  23. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002). [CrossRef]
  24. G. M. Akselrod, J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons: erratum,” Opt. Express 15(8), 5260–5261 (2007). [CrossRef]
  25. S. Cialdi, F. Castelli, I. Boscolo, and M. G. Paris, “Generation of entangled photon pairs using small-coherence-time continuous wave pump lasers,” Appl. Opt. 47(11), 1832–1836 (2008). [CrossRef] [PubMed]
  26. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92(21), 211103–211103 (2008). [CrossRef]
  27. Fidelity between a pure state |ψ〉and a mixed state|ρ〉is defined as F(|ψ〉,|ρ〉)≡〈ψ|ρ|ψ〉. In this article we always consider only the polarization part of the total two-photon wavefunction.
  28. Concurrence C for a mixed state of two qubits is defined as C(ρ)=max(0,λh1−λ2−λ3−λ4) in which λi are the eigenvalues of ρ(σy⊗σy)ρ*(σy⊗σy) in decreasing order, and σy is the (0−ii0) Pauli spin matrix. Tangle is then the square of the concurrence.
  29. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004). [CrossRef]
  30. P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999). [CrossRef]
  31. M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express 12(24), 6002–6019 (2004). [CrossRef] [PubMed]
  32. H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000). [CrossRef]
  33. M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, and I. V. Kityk, “High-average-power femtosecond pulse generation in the blue using BiB3O6.,” Opt. Lett. 29(21), 2530–2532 (2004). [CrossRef] [PubMed]
  34. http://research.physics.illinois.edu/QI/photonics/phase_compensation.html
  35. While it is possible to compensate for spatial decoherence using birefringent compensators only in one downconversion arm, other effect, such as temporal, walkoff etc., need to be considered in this case.
  36. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999). [CrossRef]
  37. A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996). [CrossRef] [PubMed]
  38. For ease of discussion we use the language of uniaxial crystals: ordinary and extraordinary polarization. For biaxial crystals`, these terms are no longer an accurate description of polarization states. However, the terms can be used to refer to orthogonal linear polarizations with different velocities, usually labeled fast and slow, in the biaxial crystal.
  39. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997). [CrossRef]
  40. Note that in this case spatial decoherence due to the temporal postcompensator must also be corrected in order to achieve complete joint spatial and spectral-temporal compensation.
  41. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited