OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18940–18956

3D shape based reconstruction of experimental data in Diffuse Optical Tomography

Athanasios Zacharopoulos, Martin Schweiger, Ville Kolehmainen, and Simon Arridge  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18940-18956 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical tomography (DOT) aims at recovering three-dimensional images of absorption and scattering parameters inside diffusive body based on small number of transmission measurements at the boundary of the body. This image reconstruction problem is known to be an ill-posed inverse problem, which requires use of prior information for successful reconstruction. We present a shape based method for DOT, where we assume a priori that the unknown body consist of disjoint subdomains with different optical properties. We utilize spherical harmonics expansion to parameterize the reconstruction problem with respect to the subdomain boundaries, and introduce a finite element (FEM) based algorithm that uses a novel 3D mesh subdivision technique to describe the mapping from spherical harmonics coefficients to the 3D absorption and scattering distributions inside a unstructured volumetric FEM mesh. We evaluate the shape based method by reconstructing experimental DOT data, from a cylindrical phantom with one inclusion with high absorption and one with high scattering. The reconstruction was monitored, and we found a 87% reduction in the Hausdorff measure between targets and reconstructed inclusions, 96% success in recovering the location of the centers of the inclusions and 87% success in average in the recovery for the volumes.

© 2009 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Processing

Original Manuscript: July 21, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 28, 2009
Published: October 8, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Athanasios D. Zacharopoulos, Martin Schweiger, Ville Kolehmainen, and Simon Arridge, "3D shape based reconstruction of experimental data in Diffuse Optical Tomography," Opt. Express 17, 18940-18956 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, 41-93 (1999). [CrossRef]
  2. A. G. Yodh and D. A. Boas, "Functional imaging with diffusing light," Biomedical photonics handbook (CRC Press, 2003).
  3. A. P. Gibson, J. C. Hebden and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  4. J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, "Inverse problems with structural prior information," Inverse Problems 15, 713-729 (1999). [CrossRef]
  5. A. Douiri, M. Schweiger, J. Riley and S. R. Arridge, "Anisotropic diffusion regularisation methods for diffuse optical tomography using edge prior information," Meas. Sci. Tech. 18, 87-95 (2007). [CrossRef]
  6. M. Schweiger and S.R. Arridge, "Optical Tomographic Reconstruction in a Complex Head Model Using a priori Region Boundary Information," Phys. Med. Biol. 44, 2703-2721 (1999). [CrossRef] [PubMed]
  7. C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy and S. R. Arridge, "Information theoretic regularization in diffuse optical tomography," J. Opt. Soc. Am. A 26, no. 5, 1277-1290 (2009). [CrossRef]
  8. P. Hiltunen, D. Calvetti and E. Somersalo, "An adaptive smoothness regularization algorithm for optical tomography," Opt. Express 16, 19957-19977 (2008). [CrossRef] [PubMed]
  9. S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger and A. Zacharopoulos, "Parameter and structure reconstruction in optical tomography," Journal of Physics: Conference Series 125,012001 (2008).
  10. J. Chang, H.L. Graber, P. C. Koo,R. Aronson,S.-L. S. Barbour and R. L. Barbour, "Optical Imaging of Anatomical Maps Derived from Magnetic Resonance Images Using Time-Independent Optical Sources," IEEE Trans. 16, 68-77,(1997).
  11. B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718, (1998). [CrossRef]
  12. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," 4, 347-354, (2002).
  13. M. Guven, B. Yazici, X. Intes and B. Chance, "Diffuse optical tomography with a priori anatomical information, " Phys. Med. Biol. 50, 2837-58, (2005). [CrossRef] [PubMed]
  14. X. Intes, C. Maloux, M. Guven, B. Yazici and B. Chance, "Diffuse optical tomography with physiological and spatial a priori constraints," Phys. Med. Biol. 49, N155-63, (2004). [CrossRef] [PubMed]
  15. B.A. Brooksby, H. Dehghani, B.W. Pogue, K.D. Paulsen KD. "Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities," IEEE Sel. Top. Quantum Electron. 9, 199-209, (2003). [CrossRef]
  16. S. R. Arridge, C. Panagiotou, M. Schweiger and V. Kolehmainen, "Translational multimodality optical imaging, Chapter 5: Multimodal Diffuse Optical Tomography: Theory," Artech Press, 101-124 (2008).
  17. S. R. Arridge and J.C. Schotland, "Optical Tomography: Forward and Inverse Problems", Inverse Problems 25, 12, (2009). [CrossRef]
  18. O. Dorn and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems 22, R67-R131, (2006). [CrossRef]
  19. O. Dorn, "A transport-backtransport method for optical tomography," Inverse Problems 14, 1107-1130 (1998). [CrossRef]
  20. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos and V. Kolehmainen, "Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique," Opt. Lett. 21, no. 4, 471-473 (2006). [CrossRef]
  21. N. Naik, R. Beatson, J. Eriksson and E. van Houten, "An implicit radial basis function based reconstruction approach to electromagnetic shape tomography," Inverse Problems 25, no. 2 (2009). [CrossRef]
  22. D. Alvarez, P. Medina, and M. Moscoso, "Fluorescence lifetime imaging from time resolved measurements using a shape-based approach," Opt. Express 17, 8843-8855 (2009). [CrossRef] [PubMed]
  23. M. Soleimani, W. R. B. Lionheart and O. Dorn, "Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data," Inverse Problems in Sc. and Eng. 14, 193-210 (2006). [CrossRef]
  24. M. Soleimani, O. Dorn and W. R. B. Lionheart, "A narrow-band level set method applied to EIT in brain for cryosurgery monitoring," IEEE Trans. Biomed. Eng. 53, 2257-2264 (2006). [CrossRef] [PubMed]
  25. A. Zacharopoulos, S.R Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, "Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrisation and a boundary element method," Inverse Problems 22, 1509-1532 (2006). [CrossRef]
  26. V. Kolehmainen, S.R. Arridge, W.R.B. Lionheart, M. Vauhkonen, and J.P. Kaipio, "Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data," Inverse Problems 15, 1375-1391 (1999). [CrossRef]
  27. G. Boverman, E.L. Miller, D.H. Brooks, D. Isaacson, F. Qianqian and D.A. Boas, "Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008). [CrossRef] [PubMed]
  28. M. E. Kilmer, E. L. Miller, A. Barbaro and D. Boas, Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography," Appl. Opt. 42, 3129-3144 (2003). [CrossRef] [PubMed]
  29. S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  30. A. Bj¨orck, "Numerical methods for least square problems," SIAM, (1996).
  31. I. Nissil¨a, K. Kotilahti, K. Fallstr¨om, and T. Katila., Instrumentation for the accurate measurement of phase and amplitude in optical tomography," Rev. Sci. Instrum. 73, 3306-3312 (2002). [CrossRef]
  32. T. Moller and B. Trumbore, Fast, minimum storage ray-triangle intersection," J. Graphics Tools 2, 21-28 (1997).
  33. R. Kopperman, P. Meyer, and R.G. Wilson, "A Jordan surface theorem for three-dimensional digital spaces," Discrete Comput. Geom. 6, 155-161 (1991). [CrossRef]
  34. M. Schweiger, S. Arridge, and I. Nissila, "GaussNewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005). [CrossRef] [PubMed]
  35. C.R. Vogel, "Computational methods for inverse problems," Frontiers in Applied Mathematics Series, SIAM, 23 (2002).
  36. D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, "Identification of conductivity imperfections of small diameter by bounday measurements. Continuous dependence and computational reconstruction,"Inverse Problems 14, 553-595 (1998). [CrossRef]
  37. G. Bal, "Optical tomography for small volume absorbing inclusions," Inverse Problems,  19, 371-386 (2003). [CrossRef]
  38. V. Kolehmainen, S.R. Arridge, M. Vauhkonen, and J.P. Kaipio, "Recovery of constant coefficients in optical diffusion tomography," Opt. Express 7, 468-480 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1185 KB)     
» Media 2: MOV (1243 KB)     
» Media 3: MOV (1173 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited