OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18995–19005

Wavevector-resolved monochromatic spectral imaging of extraordinary optical transmission through subwavelength aperture arrays

Sean P. Branagan and Paul W. Bohn  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18995-19005 (2009)
http://dx.doi.org/10.1364/OE.17.018995


View Full Text Article

Enhanced HTML    Acrobat PDF (1041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique for wavevector-resolved spectroscopic imaging of extraordinary optical transmission (EOT) is developed and tested. The approach allows a large fraction of the first Brillouin zone to be mapped at a single wavelength, thereby greatly increasing the efficiency of sensitivity mapping experiments. An axially opposed, matched pair of microscope objectives constitutes the core of the apparatus. The condensing lens defines a broad range of wavevectors incident upon the sample, while the second objective with a higher numerical aperture collects all of the light transmitted through the sample. In this way, information related to transmission efficiency over a broad range of in-plane wavevectors is preserved at different spatial coordinates in the final image. A periodically structured gold film, consisting of a square array of cylindrical pores, measuring 90 x 90 pores, 100 nm in diameter, with a lattice constant of 1.1 μm, was chosen for detailed study. Direct imaging of the EOT efficiency simultaneously across the range 0 < kx < 0.001 nm−1, or 20% of the first Brillouin zone, was accomplished, although this was not the limit of the instrument. The experiment was repeated across 21 values of the wavelength and 7 values of the refractive index, to construct a 4-dimensional data set of transmission efficiency with respect to λ, kx, and n. This technique is compatible with any of the subwavelength aperture array-based chemical sensing methods reported in the literature, however it offers faster transduction of the full spectrum of plasmonic resonant shifts.

© 2009 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 17, 2009
Revised Manuscript: September 29, 2009
Manuscript Accepted: September 30, 2009
Published: September 6, 2009

Citation
Sean P. Branagan and Paul W. Bohn, "Wavevector-resolved monochromatic spectral imaging of extraordinary optical transmission through subwavelength aperture arrays," Opt. Express 17, 18995-19005 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  6. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001). [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  8. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  9. Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008). [CrossRef]
  10. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  11. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16(26), 21271–21281 (2008). [CrossRef] [PubMed]
  12. J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006). [CrossRef]
  13. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007). [CrossRef] [PubMed]
  14. N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007). [CrossRef] [PubMed]
  15. J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008). [CrossRef]
  16. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005). [CrossRef] [PubMed]
  17. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009). [CrossRef] [PubMed]
  18. J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008). [CrossRef] [PubMed]
  19. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008). [CrossRef] [PubMed]
  20. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  21. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007). [CrossRef] [PubMed]
  22. J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007). [CrossRef]
  23. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004). [CrossRef] [PubMed]
  24. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004). [CrossRef]
  25. D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008). [CrossRef]
  26. S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006). [CrossRef] [PubMed]
  27. F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009). [CrossRef] [PubMed]
  28. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009). [CrossRef]
  29. M. W. Docter, I. T. Young, O. M. Piciu, A. Bossche, P. F. A. Alkemade, P. M. van den Berg, and Y. Garini, “Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging,” Opt. Express 14(20), 9477–9482 (2006). [CrossRef] [PubMed]
  30. S. M. Williams and J. V. Coe, “Dispersion study of the infrared transmission resonances of freestanding ni Microarrays,” Plasmonics 1(1), 87–93 (2006). [CrossRef]
  31. E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955). [CrossRef]
  32. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000). [CrossRef] [PubMed]
  33. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004). [CrossRef]
  34. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, New York, 2002), p. 384.
  35. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935). [CrossRef]
  36. R. W. Wood, “The anomalous dispersion of sodium vapour,” Philos. Mag. 3, 128–144 (1902).
  37. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (918 KB)     
» Media 2: MOV (934 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited