OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19027–19032

Stabilization of a long-armed fiber-optic single-photon interferometer

Seok-Beom Cho and Tae-Gon Noh  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 19027-19032 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on single-photon interference experiments in a Michelson-type interferometer built with two 6-km-long fiber spools, as well as on the active stabilization of the interferometer. A weak coherent light signal was (de-) multiplexed with a strong reference light using wavelength-division multiplexing technique, and real-time feedback control technique was applied for the reference light to actively stabilize the phase fluctuation in the long-armed fiber interferometer. The stabilized interferometer showed phase stability of 0.06 rad, which corresponds to an optical path length fluctuation of 15 nm between the 6-km-long interfering arms. The raw visibility obtained without subtracting noise counts in the single-photon interference experiment was more than 98% for stabilized conditions.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: June 23, 2009
Revised Manuscript: August 18, 2009
Manuscript Accepted: September 30, 2009
Published: October 7, 2009

Seok-Beom Cho and Tae-Gon Noh, "Stabilization of a long-armed fiber-optic single-photon interferometer," Opt. Express 17, 19027-19032 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20(6), 635–637 (1995). [CrossRef] [PubMed]
  2. C. Zhao and J. H. Burge, “Vibration-compensated interferometer for surface metrology,” Appl. Opt. 40(34), 6215–6222 (2001). [CrossRef]
  3. L. Delage and F. Reynaud, “Kilometric optical fiber interferometer,” Opt. Express 9(6), 267–271 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-6-267 . [CrossRef] [PubMed]
  4. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004). [CrossRef] [PubMed]
  5. D. Lin, X. Jiang, F. Xie, W. Zhang, L. Zhang, and I. Bennion, “High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology,” Opt. Express 12(23), 5729–5734 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5729 . [CrossRef] [PubMed]
  6. V. V. Krishnamachari, E. R. Andresen, S. R. Keiding, and E. O. Potma, “An active interferometer-stabilization scheme with linear phase control,” Opt. Express 14(12), 5210–5215 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5210 . [CrossRef] [PubMed]
  7. S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17,” Phys. Rev. Lett. 99(15), 153601 (2007). [CrossRef] [PubMed]
  8. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  9. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]
  10. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  11. L. Goldenberg and L. Vaidman, “Quantum cryptography based on orthogonal states,” Phys. Rev. Lett. 75(7), 1239–1243 (1995). [CrossRef] [PubMed]
  12. M. Koashi and N. Imoto, “Quantum cryptography based on split transmission of one-bit information in two steps,” Phys. Rev. Lett. 79(12), 2383–2386 (1997). [CrossRef]
  13. T.-G. Noh, “Counterfactual quantum cryptography,” arXiv:0809.3979v2 [quant-ph] (2008). http://lanl.arxiv.org/abs/0809.3979v2 .
  14. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993). [CrossRef] [PubMed]
  15. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997). [CrossRef]
  16. O. Landry, J. A. W. van Houwelingen, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation over the Swisscom telecommunication network,” J. Opt. Soc. Am. B 24(2), 398–403 (2007). [CrossRef]
  17. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998). [CrossRef]
  18. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]
  19. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71(26), 4287–4290 (1993). [CrossRef] [PubMed]
  20. B. C. Jacobs, T. B. Pittman, and K. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66(5), 052307 (2002). [CrossRef]
  21. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92(4), 047904 (2004). [CrossRef] [PubMed]
  22. J. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase noise measurement in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77(5), 052325 (2008). [CrossRef]
  23. D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86(1), 011103 (2005). [CrossRef]
  24. P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29(7), 634–635 (1993). [CrossRef]
  25. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150 km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Jpn. J. Appl. Phys. 43, L 1217–L 1219 (2004).
  26. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett. 70(7), 793–795 (1997). [CrossRef]
  27. X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30(19), 2632–2634 (2005). [CrossRef] [PubMed]
  28. A piezo actuator can generally reach its nominal displacement in approximately 1/3 of the period of the resonant frequency. For more information see http://www.physikinstrumente.com .
  29. A part of the phase noise in Fig. 2 is caused by electronic noise and laser power fluctuations, and that is measured at about 0.002 rad.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited