OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19033–19040

Nanoplasmonic couplers and splitters

Rami A. Wahsheh, Zhaolin Lu, and Mustafa A. G. Abushagur  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 19033-19040 (2009)
http://dx.doi.org/10.1364/OE.17.019033


View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present novel designs and analysis of ultra-compact couplers and 1 × 2 splitters based on plasmonic waveguides. Numerical simulation shows coupling efficiency up to 88% for the former one and 45% for each branch for the latter one. The proposed coupler design has the advantages of improving the alignment tolerance of the plasmonic waveguide with respect to the dielectric waveguide and broadening the spectrum response of the splitter.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: July 21, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: September 22, 2009
Published: October 7, 2009

Citation
Rami A. Wahsheh, Zhaolin Lu, and Mustafa A. G. Abushagur, "Nanoplasmonic couplers and splitters," Opt. Express 17, 19033-19040 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19033


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004). [CrossRef]
  3. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  4. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005). [CrossRef]
  5. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998). [CrossRef]
  6. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007). [CrossRef] [PubMed]
  7. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007). [CrossRef] [PubMed]
  8. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006). [CrossRef]
  9. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Express 31, 3288–3290 (2006).
  10. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005). [CrossRef] [PubMed]
  11. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006). [CrossRef]
  12. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999). [CrossRef]
  13. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005). [CrossRef]
  14. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  15. B. Wang and G. P. Wang, “Surface Plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Express 29, 1992–1994 (2004).
  16. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006). [CrossRef]
  17. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Inerferometers,” Opt. Commun. (to be published).
  18. A. Taflove, Computational Electrodynamics (Artech, Norwood, MA, 1995).
  19. J. P. Berenger, “A perfectly matched layer for the absorption for electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  20. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient couplers and splitters from dielectric waveguides to plasmonic waveguides”, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FThS4. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2008-FThS4

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited