OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19075–19084

Computational design of one-dimensional nonlinear photonic crystals with material dispersion for efficient second-harmonic generation

Sangbum Kim, Kihong Kim, Fabian Rotermund, and Hanjo Lim  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 19075-19084 (2009)
http://dx.doi.org/10.1364/OE.17.019075


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A computational study of the second-harmonic generation in one-dimensional photonic crystals made of GaAs and AlAs with quadratic optical nonlinearity and material dispersion is presented. The computational approach uses a shooting method to solve nonlinear wave equations for coupled fundamental and second-harmonic fields and the invariant imbedding method to obtain the linear transmittance and group index spectra. The photonic crystal is built with an elementary cell consisting of four sublayers whose thicknesses are systematically varied. Doubly-resonant second harmonic generation with high conversion efficiency is achieved by choosing the geometrical parameters of the elementary cell optimally and controlling the band structure.

© 2009 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 19, 2009
Revised Manuscript: October 5, 2009
Manuscript Accepted: October 6, 2009
Published: October 8, 2009

Citation
Sangbum Kim, Kihong Kim, Fabian Rotermund, and Hanjo Lim, "Computational design of one-dimensional nonlinear photonic crystals with material dispersion for efficient second-harmonic generation," Opt. Express 17, 19075-19084 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, "Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997). [CrossRef]
  2. C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and J. A. Levenson, "Second-harmonic generation in a doubly resonant semiconductor microcavity," Opt. Lett. 22, 1775-1777 (1997). [CrossRef]
  3. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, "Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions," Phys. Rev. E 60, 4891-4898 (1999). [CrossRef]
  4. G. T. Kiehne, A. E. Kryukov, and J. B. Ketterson, "A numerical study of optical second-harmonic generation in a one-dimensional photonic structure," Appl. Phys. Lett. 75, 1676-1678 (1999). [CrossRef]
  5. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, "Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001). [CrossRef]
  6. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. M’eriadec, and A. Levenson, "c(2) semiconductor photonic crystals," J. Opt. Soc. Am. B 19, 2094-2101 (2002). [CrossRef]
  7. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. M’eriadec, and A. Levenson, "Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length," Phys. Rev. Lett. 89, 043901 (2002). [CrossRef] [PubMed]
  8. T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, G. Mattei, N. Ohta, and S. Nakabayashi, "Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2129-2140 (2002). [CrossRef]
  9. W. Nakagawa, R.-C. Tyan, and Y. Fainman, "Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation," J. Opt. Soc. Am. A 19, 1919-1928 (2002). [CrossRef]
  10. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, "Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings," Phys. Rev. E 67, 016606 (2003). [CrossRef]
  11. A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, "Second-harmonic generation in periodically poled GaN," Appl. Phys. Lett. 83, 1077-1079 (2003). [CrossRef]
  12. J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor D’Yerville, E. Centeno, D. sagne, and J. P. Albert, "Giant second-harmonic generation in a onedimensional GaN photonic crystal," Phys. Rev. B 69, 085105 (2004). [CrossRef]
  13. M. Liscidini and L. C. Andreani, "Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors," Phys. Rev. E 73, 016613 (2006). [CrossRef]
  14. J.-J. Li, Z.-Y. Li, and D.-Z. Zhang, "Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method," Phys. Rev. E 75, 056606 (2007). [CrossRef]
  15. M.-L. Ren and Z.-Y. Li, "Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors," Opt. Express 17, 14502-14510 (2009). [CrossRef] [PubMed]
  16. J. Yuan, "Computing for second harmonic generation in one-dimensional nonlinear photonic crystals," Opt. Comm. 282, 2628-2633 (2009). [CrossRef]
  17. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  18. K. Kim, H. Lim, and D.-H. Lee, "Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals," J. Korean Phys. Soc. 39, L956-L960 (2001).
  19. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, "Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses," Opt. Express 16, 1150-1164 (2008). [CrossRef] [PubMed]
  20. M. Midrio, "Shooting technique for the computation of plane-wave reflection and transmission through onedimensional nonlinear inhomogeneous dielectric structures," J. Opt. Soc. Am. B 18, 1866-1871 (2001). [CrossRef]
  21. M. Midrio, L. Socci, and M. Romagnoli, "Frequency conversion in one-dimensional stratified media with quadratic nonlinearity," J. Opt. Soc. Am. B 19, 83-88 (2002). [CrossRef]
  22. R. Waynant and M. Ediger, Electro-Optics Handbook (McGraw-Hill, 1994).
  23. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  24. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).
  25. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  26. M. Ohashi, T. Kondo, K. Kumata, S. Fukatsu, S. S. Kano, Y. Shiraki, and R. Ito, "Nonlinear optical coefficient of AlAs thin film on GaAs substrate," Jpn. J. Appl. Phys. 31, L843-L845 (1992). [CrossRef]
  27. W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160-163 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited