OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19093–19101

Enhanced ultrafast optical nonlinearity of porous anodized aluminum oxide nanostructures

Hwang Woon Lee, John Kiran Anthony, Hoang-Duy Nguyen, Sun-il Mho, Kihong Kim, Hanjo Lim, Jaejin Lee, and Fabian Rotermund  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 19093-19101 (2009)
http://dx.doi.org/10.1364/OE.17.019093


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhanced ultrafast optical nonlinearities of porous anodized aluminum oxide (AAO) nanostructures, well-known templates for quantum dots fabrication, have been investigated using the differential optical Kerr gate technique at 800 nm. The optical nonlinearity is strongly influenced by the pore number density, the pore size and the shape. Large values of the third-order nonlinear optical susceptibility ( χ(3) ) of the order of 10−10esu are measured. The nonlinear response time is faster than or comparable to the laser pulse width (90 fs) used. The origin and variation of such remarkable optical nonlinearities has been discussed by considering the nanoporous AAO as an effective medium and utilizing the extended Maxwell Garnet theory, and by considering the additional influence from pore diameter, pore shape and surface states.

© 2009 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 2, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: October 1, 2009
Published: October 8, 2009

Citation
Hwang Woon Lee, John Kiran Anthony, Hoang-Duy Nguyen, Sun-il Mho, Kihong Kim, Hanjo Lim, Jaejin Lee, and Fabian Rotermund, "Enhanced ultrafast optical nonlinearity of porous anodized aluminum oxide nanostructures," Opt. Express 17, 19093-19101 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).
  2. V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005). [CrossRef]
  3. C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).
  4. I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003). [CrossRef]
  5. Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002). [CrossRef]
  6. M. Allendorf, P. Hesketh, “Metal organic frameworks for chemical recognition,” SPIE Newsroom, June 2009, 10.1117/2.1200905.1512.
  7. M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006). [CrossRef]
  8. S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006). [CrossRef]
  9. H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006). [CrossRef]
  10. R. L. Sutherland, Handbook of Nonlinear Optics, (New York, NY: Marcel Dekker Inc., 2003).
  11. D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988). [CrossRef]
  12. K. Minoshima, M. Taiji, and T. Kobayashi, “Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility,” Opt. Lett. 16(21), 1683–1685 (1991). [CrossRef] [PubMed]
  13. A. P. Savintsev and A. I. Temrokov, “On the surface states in Magnesia and Baria,” Tech. Phys. 47(4), 497–498 (2002). [CrossRef]
  14. S. K. Morrison and Y. S. Kivshar, “Tamm states and nonlinear surface modes in photonic crystals,” Opt. Commun. 266(1), 323–326 (2006). [CrossRef]
  15. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992). [CrossRef] [PubMed]
  16. R. K. Wangsness, Electromagnetic Fields, 2nd Ed., (New York, NY: Wiley, 1986).
  17. O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000). [CrossRef]
  18. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited