OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19160–19165

Direct imaging of tunneling from a potential well

Mathew Tomes, Kerry J. Vahala, and Tal Carmon  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 19160-19165 (2009)
http://dx.doi.org/10.1364/OE.17.019160


View Full Text Article

Enhanced HTML    Acrobat PDF (706 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally map the wavefunction in the vicinity of a radial potential well. We photograph light intensity near the tunneling region as well as measure the spiraling phase structure via interference with a reference wave. This spiraling phase structure is required for conservation of angular momentum. The experimental image reveals the non-intuitive emission of light from a region in space that is empty of material and relatively far from the device.

© 2009 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optical Devices

History
Original Manuscript: July 22, 2009
Revised Manuscript: September 3, 2009
Manuscript Accepted: September 10, 2009
Published: October 8, 2009

Citation
Mathew Tomes, Kerry J. Vahala, and Tal Carmon, "Direct imaging of tunneling from a potential well," Opt. Express 17, 19160-19165 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Newton, Opticks: or, a treatise of the reflections, refractions, inflections and colours of light (Printed for W. Innys, 1730).
  2. G. Gamow, “Zur Quantentheorie de Atomkernes,” Z. Phys. 51(3-4), 204–212 (1928). [CrossRef]
  3. B. R. Johnson, “Theory of Morphology-Dependent Resonances - Shape Resonances and Width Formulas,” J. Opt. Soc. Am. A 10(2), 343–352 (1993). [CrossRef]
  4. G. Binning, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49(1), 57–61 (1982). [CrossRef]
  5. L. Esaki, “New Phenomenon in Narrow Germanium Para-Normal-Junctions,” Phys. Rev. 109(2), 603–604 (1958). [CrossRef]
  6. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500-a Spatial-Resolution Light-Microscope. 1. Light Is Efficiently Transmitted through Gamma-16 Diameter Apertures,” Ultramicroscopy 13(3), 227–231 (1984). [CrossRef]
  7. D. W. Pohl, U. C. Fischer, and U. T. Durig, “Scanning near-Field Optical Microscopy (Snom),” J. Microscopy-Oxford 152, 853–861 (1988). [CrossRef]
  8. W. M. Robertson, J. Ash, and J. M. McGaugh, “Breaking the sound barrier: Tunneling of acoustic waves through the forbidden transmission region of a one-dimensional acoustic band gap array,” Am. J. Phys. 70(7), 689–693 (2002). [CrossRef]
  9. C. Sias, A. Zenesini, H. Lignier, S. Wimberger, D. Ciampini, O. Morsch, and E. Arimondo, “Resonantly enhanced tunneling of Bose-Einstein condensates in periodic potentials,” Phys. Rev. Lett. 98(12), 120403 (2007). [CrossRef] [PubMed]
  10. E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature 237, 510 (1972). [CrossRef] [PubMed]
  11. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep.-Rev. Sec. Phys. Lett. 436, 1–69 (2006).
  12. L. A. Vainshtein, Open resonators and open waveguides (Golem Press, Boulder, Colo., 1969).
  13. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007). [CrossRef] [PubMed]
  14. G. Roll, T. Kaiser, S. Lange, and G. Schweiger, “Ray interpretation of multipole fields in spherical dielectric cavities,” J. Opt. Soc. Am. A 15(11), 2879–2891 (1998). [CrossRef]
  15. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998). [CrossRef]
  16. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  17. R. K. Chang, and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific Publishing Co. Pte. Ltd., Singapore, 1996).
  18. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007). [CrossRef]
  19. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  20. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl.Phys. Lett . 86, (2005).
  21. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005). [CrossRef] [PubMed]
  22. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin Lasing with a CaF2 Whispering Gallery Mode Resonator,” Phys. Rev. Lett. 102, (2009). [CrossRef] [PubMed]
  23. M. Tomes and T. Carmon, “Photonic Micro-Electromechanical Systems Vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett. 102(11), 4 (2009). [CrossRef]
  24. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett . 93, (2004). [CrossRef] [PubMed]
  25. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 470 (2007). [CrossRef]
  26. T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, (2008). [CrossRef] [PubMed]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, (2007). [CrossRef]
  28. M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001). [CrossRef]
  29. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 135–143.
  30. “A movie is presented in the file “tomes dynamics of the electric field in the tunneling region near a dielectric sphere.avi.”
  31. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: AVI (6436 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited