OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19253–19263

Resolution-enhanced integral imaging microscopy that uses lens array shifting

Young-Tae Lim, Jae-Hyeung Park, Ki-Chul Kwon, and Nam Kim  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 19253-19263 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A resolution-enhanced integral imaging microscope that uses lens array shifting is proposed in this study. The lens shift method maintains the same field of view of the reconstructed orthographic view images with increased spatial density. In this study, multiple sets of the elemental images were captured with horizontal and vertical shifts of the micro lens array and combined together to form a single set of the elemental images. From the combined elemental images, orthographic view images and depth slice images of the microscopic specimen were generated with enhanced resolution.

© 2009 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.0110) Medical optics and biotechnology : Imaging systems
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: August 11, 2009
Revised Manuscript: October 1, 2009
Manuscript Accepted: October 7, 2009
Published: October 9, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Young-Tae Lim, Jae-Hyeung Park, Ki-Chul Kwon, and Nam Kim, "Resolution-enhanced integral imaging microscopy that uses lens array shifting," Opt. Express 17, 19253-19263 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Inoue and R. Oldenbourg, Handbook of Optics(McGrawHill, 1995), Chap. 17.
  2. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004). [CrossRef] [PubMed]
  3. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).
  4. H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, “Surgical navigation by autostereoscopic image overlay of integral videography,” IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004). [CrossRef] [PubMed]
  5. R. Ostnes, V. Abbottand, and S. Lavender, “Visualisation techniques: An overview - Part 1,” The Hydrographic Journal (113), 3–7 (2004).
  6. H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006). [CrossRef]
  7. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  8. G. Lippmmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  9. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004). [CrossRef] [PubMed]
  10. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46(29), 7149–7154 (2007). [CrossRef] [PubMed]
  11. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. 47(19), D80–D86 (2008). [CrossRef] [PubMed]
  12. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1067 . [CrossRef] [PubMed]
  13. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15(26), 18253–18267 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-18253 . [CrossRef] [PubMed]
  14. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15(8), 4814–4822 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4814 . [CrossRef] [PubMed]
  15. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16(12), 8800–8813 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8800 . [CrossRef] [PubMed]
  16. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003). [CrossRef]
  17. H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44(3), 305–315 (2005). [CrossRef] [PubMed]
  18. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001). [CrossRef]
  19. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002). [CrossRef]
  20. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11(26), 3528–3541 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3528 . [CrossRef] [PubMed]
  21. D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. K. 12(3), 131–135 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (494 KB)     
» Media 2: MOV (544 KB)     
» Media 3: MOV (671 KB)     
» Media 4: MOV (764 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited