OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19311–19327

A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation

Wen Qi Zhang, Shahraam Afshar V., and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 19311-19327 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (5323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach to the design of optical microstructured fibers that have group velocity dispersion (GVD) and effective nonlinear coefficient (y) tailored for supercontinuum (SC) generation. This hybrid approach combines a genetic algorithm (GA) with pulse propagation modeling, but without include it into the GA loop, to allow the efficient design of fibers that are capable of generating highly coherent and large bandwidth SC in the mid-infrared (Mid-IR) spectrum. To the best of our knowledge, this is the first use of a GA to design fiber for SC generation. We investigate the robustness of these fiber designs to variation in the fiber’s structural parameters. The optimized fiber structure based on a type of tellurite glass (70TeO2-10Na2O-20ZnF2) is predicted to have near-zero group velocity dispersion (<±2ps/nm/km) from 2 to 3 µm, and a effective nonlinear coefficient of y≈174W-1km-1 at 2 µm. The SC output of this fiber shows a significant bandwidth and coherence increase compare to a fiber with a single zero group velocity dispersion wavelength at 2 µm.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(260.2030) Physical optics : Dispersion
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 8, 2009
Revised Manuscript: October 3, 2009
Manuscript Accepted: October 5, 2009
Published: October 9, 2009

Wen Qi Zhang, Shahraam Afshar V., and Tanya M. Monro, "A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation," Opt. Express 17, 19311-19327 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 °A via Four-Photon coupling in glass," Phys. Rev. Lett. 24, 584 (1970). [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, "Observation of Self-Phase modulation and Small-Scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592 (1970). [CrossRef]
  3. S. Kaasalainen, T. Lindroos, and J. Hyyppa, "Toward hyperspectral lidar: Measurement of spectral backscatter intensity with a supercontinuum laser source," IEEE Geosci. Remote Sens. Lett. 4, 211-215 (2007). [CrossRef]
  4. C. Colley, J. Hebden, D. Delpy, A. Cambrey, R. Brown, E. Zibik, W. Ng, L. Wilson, and J. Cockburn, "Midinfrared optical coherence tomography," Rev. Sci. Instrum.78 (2007). [CrossRef]
  5. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15, 11385-11395 (2007). [CrossRef] [PubMed]
  6. K. Shi, P. Li, and Z. Liu, "Broadband coherent anti-Stokes raman scattering spectroscopy in supercontinuum optical trap," Appl. Phys. Lett.90 (2007). [CrossRef]
  7. H. Kano and H. o Hamaguchi, "Coherent raman imaging of human living cells using a supercontinuum light source," Jpn. J. Appl. Phys. 146, 6875-6877 (2007). [CrossRef]
  8. D. Pestov, X. Wang, G. Ariunbold, R. Murawski, V. Sautenkov, A. Dogariu, A. Sokolov, and M. Scully, "Singleshot detection of bacterial endospores via coherent raman spectroscopy," P. Natl. Acad. Sci. USA 105, 422-427 (2008). [CrossRef]
  9. T. M. Monro and H. Ebendorff-Heidepriem, "Progress in microstructured optical fibers," Annu. Rev. Mater. Res. 36, 467-495 (2006). [CrossRef]
  10. W. Zhang, S. V, H. Ebendorff-Heidepriem, and T. Monro, "Record nonlinearity in optical fibre," Electron. Lett. 44, 1453-1455 (2008). [CrossRef]
  11. C. Xia, M. Kumar, O. R. Kulkarni, M. N. Islam, F. L. Terry, and M. J. Freeman, "Mid-infrared supercontinuum generation to 4.5 mu m in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006). [CrossRef] [PubMed]
  12. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Topics Quantum Electron. 13, 738-749 (2007). [CrossRef]
  13. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008). [CrossRef] [PubMed]
  14. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  15. B. Schenkel, R. Paschotta, and U. Keller, "Pulse compression with supercontinuum generation in microstructure fibers," J. Opt. Soc. Am. B 22, 687-693 (2005). [CrossRef]
  16. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  17. K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001). [CrossRef]
  18. B. Washburn and N. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 2166-2175 (2004). [CrossRef] [PubMed]
  19. B. Washburn, R. Fox, N. Newbury, J. Nicholson, K. Feder, P. Westbrook, and C. Jørgensen, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004). [CrossRef] [PubMed]
  20. C. Gross, T. Best, D. van Oosten, and I. Bloch, "Coherent and incoherent spectral broadening in a photonic crystal fiber," Opt. Lett. 32, 1767-1769 (2007). [CrossRef] [PubMed]
  21. J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, "A high coherence supercontinuum source at 1550 nm," In Optical Fiber Communications Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511-512.
  22. N. Nishizawa and J. Takayanagi, "Octave spanning high-quality supercontinuum generation in all-fiber system," J. Opt. Soc. Am. B 24, 1786-1792 (2007). [CrossRef]
  23. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), 3rd ed.
  24. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  25. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-mu m pumped supercontinuum generation," J. Lightwave Technol. 24, 183-190 (2006). [CrossRef]
  26. J. J. Miret, E. Silvestre, and P. Andr’es, "Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers," Opt. Express 17, 9197-9203 (2009). [CrossRef] [PubMed]
  27. Z. Zhu and T. Brown, "Effect of frequency chirping on supercontinuum generation in photonic crystal fibers," Opt. Express 12, 689-694 (2004). [CrossRef] [PubMed]
  28. D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, "Adaptive ferntosecond pulse shaping to control supercontinuum generation in a microstructure fiber," Opt. Commum. 276, 288-292 (2007). [CrossRef]
  29. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett.,  30, 3132-3134 (2005). [CrossRef] [PubMed]
  30. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express 9687-697 (2001). [CrossRef] [PubMed]
  31. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Ortigosa-Blanch, "Analytical evaluation of chromatic dispersion in photonic crystal fibers," Opt. Lett. 30, 453-455 (2005). [CrossRef] [PubMed]
  32. E. Silvestre, T. Pinheiro-Ortega, P. Andre’s, J. J. Miret, and A´ ngela Coves, "Differential toolbox to shape dispersion behavior in photonic crystal fibers," Opt. Lett. 31, 1190-1192 (2006). [CrossRef] [PubMed]
  33. L. DAVIS, Handbook Of Genetic Algorithms (Thomson Publishing Group, 1991), 1st ed.
  34. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004). [CrossRef] [PubMed]
  35. S. Afshar V. and T. M. Monro, "A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity," Opt. Express 17, 2298-2318 (2009). [CrossRef]
  36. M. D. Turner, T. M. Monro, and S. A. V., "A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: stimulated raman scattering," Opt. Express 17, 11565-11581 (2009). [CrossRef] [PubMed]
  37. M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, "Tellurite and fluorotellurite glasses for fiberoptic raman amplifiers: Glass characterization, optical properties, raman gain, preliminary fiberization, and fiber characterization," J. Am. Ceram. Soc. 90, 1448-1457 (2007). [CrossRef]
  38. K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, "Measurement of the nonlinear index of silica-core and dispersion-shifted fibers," Opt. Lett. 19, 257-259 (1994). [CrossRef] [PubMed]
  39. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002). [CrossRef]
  40. J. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Topics Quantum Electron. 8, 651-659 (2002). [CrossRef]
  41. R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2005), 2nd ed.
  42. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1057 (2007). [CrossRef] [PubMed]
  43. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited