OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19401–19413

Coupling of gap plasmons in multi-wire waveguides

A. Manjavacas and F. J. García de Abajo  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19401-19413 (2009)
http://dx.doi.org/10.1364/OE.17.019401


View Full Text Article

Enhanced HTML    Acrobat PDF (1404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the coupling of gap plasmons in various configurations of neighboring metallic nanowires. Starting with the basic element defining a gap plasmon, consisting of two neighboring silver wires, we study the energy splitting and symmetry properties of hybridized plasmons resulting from the interaction of two wire pairs. The system is shown to display non-avoided crossings of hybridized modes, and it evolves at short distances towards a degenerate system consisting of four wires arranged in a square, where two new gap plasmons emerge from redshifted higher-energy modes. The gap modes of three neighboring wires are also described in a continuous transition from a coplanar configuration to an equilateral triangle arrangement. The interaction between wire pairs is shown to be weak enough to prevent efficient transfer of plasmon signal from a pair to the other one, which is beneficial to avoid crosstalking, but not to produce waveguide couplers. The coupling is significantly increased by placing a wire of rectangular cross section in between the wire pairs, thus allowing us to achieve large plasmon-signal transfers within propagation distances below the attenuation length. Our results can find application in the design of signal-processing devices based upon gap plasmons.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 24, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 24, 2009
Published: October 12, 2009

Citation
A. Manjavacas and F. J. García de Abajo, "Coupling of gap plasmons in multi-wire waveguides," Opt. Express 17, 19401-19413 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  2. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). [CrossRef]
  3. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  4. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider,W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  7. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart’?n-Moreno, and F. J. García-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  8. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef]
  9. A. Manjavacas and F. J. García de Abajo, "Robust plasmon waveguides in strongly interacting nanowire arrays," Nano Lett. 9, 1285-1289 (2009). [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photon. 2, 496-500 (2008). [CrossRef]
  11. J. A. Conway, S. Sahni, and T. Szkopek, "Plasmonic interconnects versus conventional interconnects: A comparison of latency, crosstalk and energy costs," Opt. Express 15, 4474-4484 (2007). [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, "Crosstalk between three-dimensional plasmonic slot waveguides," Opt. Express 16, 2129-2140 (2008). [CrossRef] [PubMed]
  13. F. J. Garc’?a de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, "Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals," Phys. Rev. B 68, 205105 (2003). [CrossRef]
  14. F. J. García de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002). [CrossRef]
  15. F. J. Garc’?a de Abajo and M. Kociak, "Probing the photonic local density of states with electron energy loss spectroscopy," Phys. Rev. Lett. 100, 106804 (2008). [CrossRef] [PubMed]
  16. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  18. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1981).
  19. I. N. Levine, Molecular Spectroscopy (Wiley-Interscience, London, 1975).
  20. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides - I: Summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975). [CrossRef]
  21. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides - II: Theory," IEEE Trans. Microwave Theory Tech. 23, 429-433 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited