OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19435–19443

Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring

Sangjun Lee, Sangin Kim, and Hanjo Lim  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19435-19443 (2009)
http://dx.doi.org/10.1364/OE.17.019435


View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present improved characteristics of the curved plasmonic waveguide which consists of a thin metal stripe with asymmetric cladding layers. It is shown that in the proposed curved asymmetric plasmonic waveguides, a balance between a radiation due to bending and a radiation due to the asymmetric claddings allows a bending with a smaller radius curvature and a lower loss compared to the waveguide with symmetric claddings. At the same time, a symmetric metal stripe waveguide’s typical trade-off between the bending characteristics and the propagation loss of a straight waveguide is relaxed with proper amount of asymmetry. With the proposed structure, a plasmonic waveguide bending whose radius is as small as 2 mm with a total loss of 1.8 dB/90° is designed. Enhanced sensitivity to the surrounding medium and its application are discussed.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 8, 2009
Revised Manuscript: October 6, 2009
Manuscript Accepted: October 8, 2009
Published: October 12, 2009

Citation
Sangjun Lee, Sangin Kim, and Hanjo Lim, "Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring," Opt. Express 17, 19435-19443 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Boardman, ed., Electromagnetic Surface Modes, (Wiley Interscience, 1982).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  4. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991). [CrossRef]
  5. P. Berini, “Plasmon-Polariton Waves Guided by Thin Lossy Metal Films of Finite Width: Bound Modes of Symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  6. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000). [CrossRef]
  7. R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003). [CrossRef]
  8. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005), http://www.opticsexpress.org/abstract.cfm?id=82563 . [CrossRef] [PubMed]
  9. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  10. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon-polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006). [CrossRef]
  11. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006). [CrossRef]
  12. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2365 . [CrossRef] [PubMed]
  13. W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M. H. Lee, and W. J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13043 . [CrossRef] [PubMed]
  14. S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996). [CrossRef]
  15. G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994). [CrossRef]
  16. S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998). [CrossRef]
  17. R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  19. I. G. Breukelaar, “Surface plasmon-polaritons in thin metal strips and slabs: waveguiding and mode cutoff,” B.A.Sc.Thesis, University of Ottawa, Canada (2004).
  20. S. Park and S. H. Song, “Polymer variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42(7), 402–404 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited