OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19451–19458

Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders

J. Y. Lu and Y. H. Chang  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19451-19458 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (7249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical singularities associated with the energy flow of two closely spaced dielectric-core gold-shell nanocylinders are studied by two-dimensional finite difference time domain method. The simulation results show that optical vortices as well as saddle points can be observed in the energy flow pattern of light interacting with the core-shell nanocylinder pair in its in-phase symmetric dipolar plasmon mode. The rotating direction of the optical vortices can be tuned by varying the width of the gap between the nanocylinder pair and the value of the permittivity of the dielectric core.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: September 15, 2009
Manuscript Accepted: October 7, 2009
Published: October 13, 2009

J. Y. Lu and Y. H. Chang, "Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders," Opt. Express 17, 19451-19458 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974). [CrossRef]
  2. J. F. Nye, Natural Focusing and the Fine Stuctures of Light (Institute of Physics, Bristol, 1999).
  3. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-21-8372 . [CrossRef] [PubMed]
  4. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006). [CrossRef]
  5. Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000). [CrossRef]
  6. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008). [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  8. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 . [CrossRef] [PubMed]
  9. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004). [CrossRef]
  10. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  11. K. T. Gahagan and G. A. Swartzlander, “Simultaneous trapping of low index and high index microparticles observed with an optical vortex trap,” J. Opt. Soc. Am. B 16(4), 533–537 (1999). [CrossRef]
  12. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006). [CrossRef] [PubMed]
  13. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  14. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008). [CrossRef] [PubMed]
  15. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  16. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  17. J. Y. Lu and Y. H. Chang, “Implementation of an efficient dielectric function into finite difference time domain method for simulating the coupling between localized surface plasmon of nanostructures,” Superlattices Microstruct. (to be published).
  18. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  19. H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).
  20. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  21. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004). [CrossRef]
  22. J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited