OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19459–19469

Tunable optical metamaterial based on liquid crystal-gold nanosphere composite

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19459-19469 (2009)
http://dx.doi.org/10.1364/OE.17.019459


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Effect of the surrounding anisotropic liquid crystal medium on the surface plasmon resonance (SPR) exhibited by concentrated suspensions of gold nanospheres has been investigated experimentally and compared with the Mie scattering theory. The observed polarization-sensitive SPR and the red-shift in the SPR wavelength with increasing concentration of the gold nanospheres in the liquid crystal matrix have been explained using calculations based on the Maxwell Garnet effective medium theory. Agglomeration of the gold nanospheres that could also lead to such a red-shift has been ruled out using Atomic force microscopy study of thin nanoparticle-doped smectic films obtained on solid substrates. Our study demonstrates feasibility of obtaining tunable optical bulk metamaterials based on smectic liquid crystal - nanoparticle composites.

© 2009 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 26, 2009
Revised Manuscript: October 4, 2009
Manuscript Accepted: October 4, 2009
Published: October 13, 2009

Citation
R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite," Opt. Express 17, 19459-19469 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19459


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Wang, “Voltage induced color selective absorption with surface plasmons,” Appl. Phys. Lett. 67(19), 2759–2761 (1995). [CrossRef]
  2. X. Wang, K. Do-Hoon, D. H. Werner, I. C. Khoo, A.V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 1–3 (2007).
  3. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
  4. U. Kreibig, M. Völlmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin 1995).
  5. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007). [CrossRef] [PubMed]
  6. P. G. De Gennes, and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1995).
  7. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge 1992).
  8. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31(17), 2592–2594 (2006). [CrossRef] [PubMed]
  9. R. Pratibha, W. Park, and I. I. Smalyukh are preparing a manuscript to be called “Elasticity and layer structure stabilized colloidal nanoparticle dispersions in lamellar liquid crystals.”
  10. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17(25), 3717–3734 (2005). [CrossRef] [PubMed]
  11. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, “One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes,” J. Am. Chem. Soc. 120(9), 1959–1964 (1998). [CrossRef]
  12. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (New York: Wiley-Interscience1983).
  13. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  14. G. M. Koenig, M.-V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon resonances of chemically functionlized gold nanoparticles to local order in thermotropic liquid crystals,” Chem. Mater. 19(5), 1053–1061 (2007). [CrossRef]
  15. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001). [CrossRef]
  16. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997). [CrossRef] [PubMed]
  17. R. W. Ruhwandl and E. M. Terentjev, “Long-range forces and aggregation of colloidal particles in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 2958–2961 (1997). [CrossRef]
  18. F. S. Y. Yeung, Y. L. J. Ho, Y. W. Li, and H. S. Kwok,“Liquid crystal alignment layer with controllable anchoring energies,” J. Display Tech 4(1), 24–27 (2008). [CrossRef]
  19. S. Y. Park and D. Stroud, “Surface-enhanced plasmon plitting in a liquid crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94(21), 217401 (2005). [CrossRef] [PubMed]
  20. J. Müller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scatterring with single metal nanoparticles,” Appl. Phys. Lett. 81(1), 171–173 (2002). [CrossRef]
  21. S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metal particles in a nematic liquid crystal,” Appl. Phys. Lett. 85(14), 2920–2922 (2004). [CrossRef]
  22. P. Sens and M. S. Turner, “Inclusions in thin smectic films,” J. Phys, II France 7(12), 1855–1870 (1997). [CrossRef]
  23. M. S. Turner and P. Sens, “Interactions between particulate inclusions in a smectic-A liquid crystal,” Phys. Rev. 55, R1275–R1278 (1997).
  24. C. D. Santangelo and R. D. Kamien, “Bogomol’nyi, Prasad, and Sommerfield Configurations in smectics,” Phys. Rev. Lett. 91(4), 045506 (2003). [CrossRef] [PubMed]
  25. G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jakli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 1–5 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited