OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19470–19475

Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action

Samir K. Mondal, Anupam Mitra, Nahar Singh, S. N. Sarkar, and Pawan Kapur  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19470-19475 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (~4 µm), large cone angle (~38°), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.

© 2009 OSA

OCIS Codes
(230.2285) Optical devices : Fiber devices and optical amplifiers
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: July 31, 2009
Revised Manuscript: August 26, 2009
Manuscript Accepted: September 15, 2009
Published: October 13, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Samir K. Mondal, Anupam Mitra, Nahar Singh, S. N. Sarkar, and Pawan Kapur, "Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action," Opt. Express 17, 19470-19475 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13(7), 1200–1221 (1995). [CrossRef]
  2. S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992). [CrossRef]
  3. Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nanoprobe,” Eur. Phys. J. Appl. Phys. 46(2), 20101 (2009). [CrossRef]
  4. T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006). [CrossRef]
  5. M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006). [CrossRef]
  6. D. R. Turner, United States Patent, 4,469,554, AT&T Bell Laboratories, Murray Hill, NJ, USA, 1983.
  7. S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996). [CrossRef]
  8. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999). [CrossRef]
  9. K. W. C. Lai, C. C. H. Kwong, and W. J. Li, “KL Probes for Robotic-Based Cellular Nano Surgery”, in Proceedings of IEEE Conference on Nanotechnology (Institute of Electrical and Electronics Engineers, 2003), pp. 152–155.
  10. S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J. D. Love, and V. Steblina, “A fractal-based fibre for ultra-high throughput optical probes,” Opt. Express 15(5), 2468–2475 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2468 . [CrossRef] [PubMed]
  11. T. J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10920 . [CrossRef] [PubMed]
  12. V. F. Dryakhlushin, V. P. Veiko, and N. B. Voznesenskii, “Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters,” Quantum Electron. 37(2), 193–203 (2007). [CrossRef]
  13. C. W. Extrand and S. I. Moon, “Critical meniscus height of liquids at the circular edge of cylindrical rods and disks,” Langmuir 25(2), 992–996 (2009). [CrossRef] [PubMed]
  14. K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988). [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).
  16. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16(12), 8887–8895 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8887 . [CrossRef] [PubMed]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited