OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19476–19485

Plasmonic nano lithography with a high scan speed contact probe

Yongwoo Kim, Seok Kim, Howon Jung, Eungman Lee, and Jae W. Hahn  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19476-19485 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate plasmonic lithography with an optical contact probe to achieve high speed patterning without external gap distance control between the probe and the photoresist. The bottom surface of the probe is covered with a 10 nm thickness silica glass film for the gap distance control and coated with self-assembled monolayer (SAM) to reduce friction between the probe and the photoresist. We achieve a patterning resolution of ~50 nm and a patterning speed of ~10 mm/s. We obtain the quality of line patterning comparable to that in conventional optical lithography.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication
(210.4245) Optical data storage : Near-field optical recording
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: September 2, 2009
Revised Manuscript: September 30, 2009
Manuscript Accepted: October 2, 2009
Published: October 13, 2009

Yongwoo Kim, Seok Kim, Howon Jung, Eungman Lee, and Jae W. Hahn, "Plasmonic nano lithography
 with a high scan speed contact probe," Opt. Express 17, 19476-19485 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Leggett, “Scanning near-field photolithography--surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35(11), 1150–1161 (2006). [CrossRef] [PubMed]
  2. J. Loos, “The Art of SPM: Scanning probe microscopy in materials science,” Adv. Mater. 17(15), 1821–1833 (2005). [CrossRef]
  3. S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004). [CrossRef]
  4. B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006). [CrossRef]
  5. I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007). [CrossRef]
  6. Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005). [CrossRef]
  7. J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008). [CrossRef]
  8. M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001). [CrossRef]
  9. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002). [CrossRef]
  10. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  11. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005). [CrossRef]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  13. C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008). [CrossRef] [PubMed]
  14. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003). [CrossRef] [PubMed]
  15. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  16. Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007). [CrossRef] [PubMed]
  17. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev., 1–16 (2009) (to be published).
  18. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006). [CrossRef] [PubMed]
  19. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006). [CrossRef] [PubMed]
  20. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008). [CrossRef] [PubMed]
  21. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  22. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef] [PubMed]
  23. K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006). [CrossRef]
  24. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008). [CrossRef] [PubMed]
  25. E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008). [CrossRef] [PubMed]
  26. E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005). [CrossRef]
  27. M. Yan, L. Thylén, M. Qiu, and D. Parekh, “Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton,” Opt. Express 16(10), 7499–7507 (2008). [CrossRef] [PubMed]
  28. N. Marcuvitz, Waveguide handbook (Boston Technical Publishers, Lexington 1964).
  29. K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004). [CrossRef]
  30. K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005). [CrossRef] [PubMed]
  31. C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005). [CrossRef]
  32. H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007). [CrossRef]
  33. G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005). [CrossRef] [PubMed]
  34. S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited