OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19544–19550

Dual polarization fiber grating laser hydrophone

Bai-Ou Guan, Yan-Nan Tan, and Hwa-Yaw Tam  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19544-19550 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel fiber optic hydrophone based on the integration of a dual polarization fiber grating laser and an elastic diaphragm is proposed and experimentally demonstrated. The diaphragm transforms the acoustic pressure into transversal force acting on the laser cavity which changes the fiber birefringence and therefore the beat frequency between the two polarization lines. The proposed hydrophone has advantages of ease of interrogation, absolute frequency encoding, and capability to multiplex a number of sensors on a single fiber by use of frequency division multiplexing technique.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.2840) Fiber optics and optical communications : Heterodyne
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 1, 2009
Revised Manuscript: August 14, 2009
Manuscript Accepted: August 17, 2009
Published: October 14, 2009

Bai-Ou Guan, Yan-Nan Tan, and Hwa-Yaw Tam, "Dual polarization fiber grating laser hydrophone," Opt. Express 17, 19544-19550 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Nash, “Review of interferometric optical fibre hydrophone technology,” IEE Proc., Radar Sonar Navig. 143(3), 204–209 (1996). [CrossRef]
  2. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004). [CrossRef]
  3. G. A. Cranch and P. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightwave Technol. 19(5), 687–699 (2001). [CrossRef]
  4. N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982). [CrossRef]
  5. W. B. Spillman and R. L. Gravel, “Moving fiber-optic hydrophone,” Opt. Lett. 5(1), 30–31 (1980). [CrossRef] [PubMed]
  6. W. B. Spillman and D. H. McMahon, “Frustrated-total-internal-reflection multimode fiber-optic hydrophone,” Appl. Opt. 19(1), 113–117 (1980). [CrossRef] [PubMed]
  7. R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004). [CrossRef]
  8. N. Takahashi, S., Takahashi, and K. Tetsumura, “Fiber-Bragg-grating underwater acoustic sensor,” in Proc. 13th Int. Conf. Optical Fiber Sensors, Kyongju, Korea, 565–568 (1999).
  9. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).
  10. J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” In Proc. 15th Int. Conf. Optical Fiber Sensors, Portland, Oregon, 317–320 (2002).
  11. D. J. Hill, and P. J. And, Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” In Proc. 14th Int. Conf. Optical Fiber Sensors, Venice, 33–36 (2000).
  12. S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 627–610 (2005).
  13. P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006). [CrossRef]
  14. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993). [CrossRef]
  15. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005). [CrossRef]
  16. L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982). [CrossRef]
  17. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited