OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19580–19585

Scattering by solutions of major sea salts

Xiaodong Zhang, Lianbo Hu, Michael S. Twardowski, and James M. Sullivan  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19580-19585 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Increased scattering by seawater relative to that by pure water is primarily due to additional fluctuation of the refractive index contributed by sea salts. Salts with different ionic weight and sizes, while barely affecting the scattering that is due to density fluctuations, have a significant effect on the scattering that is due to concentration fluctuations. And this explains the major differences of their total scattering that would be observed. Scattering by solutions of NaCl, the major sea salt, is consistently about 6.7% and 4% lower than seawater of the same mass concentration and of the same refractive index, respectively. Because of ionic interactions, the molecular scattering does not follow the simple addition rule that applies to bulk inherent optical properties, with the total less than the summation of the parts. The possible values of scattering by waters of, such as, Dead Sea or Orca Basin, which have different salt composition from seawater, are discussed.

© 2009 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5840) Scattering : Scattering, molecules

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 4, 2009
Manuscript Accepted: October 9, 2009
Published: October 14, 2009

Xiaodong Zhang, Lianbo Hu, Michael S. Twardowski, and James M. Sullivan, "Scattering by solutions of major sea salts," Opt. Express 17, 19580-19585 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Morel, “Etude Experimentale de la diffusion de la lumiere par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pures,” J. Chim. Phys. 10, 1359–1366 (1966).
  2. A. Morel, “Note au sujet des constantes de diffusion de la lumiere pour l'eau et l'eau de mer optiquement pures,” Cah. Oceanogr. 20, 157–162 (1968).
  3. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997). [CrossRef] [PubMed]
  4. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006). [CrossRef] [PubMed]
  5. M. Ravisankar, A. T. Reghunath, K. Sathianandan, and V. P. N. Nampoori, “Effect of dissolved NaCl, MgCl2, and Na2SO4 in seawater on the optical attenuation in the region from 430 to 630 nm,” Appl. Opt. 27(18), 3887–3894 (1988). [CrossRef] [PubMed]
  6. I. Steinhorn, “In situ salt precipitation at the Dead Sea,” Limnol. Oceanogr. 28, 580–583 (1983). [CrossRef]
  7. F. J. Millero, Chemical Oceanography (Taylor & Francis, Boca Raton, 2005).
  8. P. Debye, “Light Scattering in Solutions,” J. Appl. Phys. 15(4), 338–342 (1944). [CrossRef]
  9. G. Oster, “The scattering of light and its applications to chemistry,” Chem. Rev. 43(2), 319–365 (1948). [CrossRef] [PubMed]
  10. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17(3), 1671–1678 (2009). [CrossRef] [PubMed]
  11. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17(7), 5698–5710 (2009). [CrossRef] [PubMed]
  12. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17(15), 12685–12691 (2009). [CrossRef] [PubMed]
  13. A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys. 338(16), 1275–1298 (1910). [CrossRef]
  14. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2003).
  15. F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).
  16. K. S. Pitzer and G. Mayorga, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” J. Phys. Chem. 77(19), 2300–2308 (1973). [CrossRef]
  17. R. S. Farinato and R. L. Rowell, “New values of the light scattering depolarization and anisotropy of water,” J. Chem. Phys. 65(2), 593–595 (1976). [CrossRef]
  18. P. Debye, “Molecular-weight Determination by Light Scattering,” J. Phys. Chem. 51(1), 18–32 (1947). [CrossRef]
  19. Y. Marcus, “Ionic radii in aqueous solutions,” Chem. Rev. 88(8), 1475–1498 (1988). [CrossRef]
  20. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).
  21. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001). [CrossRef]
  22. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997). [CrossRef]
  23. F. J. Millero, “The Physical Chemistry of Seawater,” Annu. Rev. Earth Planet. Sci. 2(1), 101–150 (1974). [CrossRef]
  24. M. R. Wright, An Introduction to Aqueous Electrolyte Solutions (John Wiley & Sons Ltd., West Sussex, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited