OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19586–19598

Guided resonances in photonic crystals with point-defected aperiodically-ordered supercells

Ilaria Gallina, Marco Pisco, Armando Ricciardi, Stefania Campopiano, Giuseppe Castaldi, Andrea Cusano, and Vincenzo Galdi  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19586-19598 (2009)
http://dx.doi.org/10.1364/OE.17.019586


View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we study the excitation of guided resonances (GRs) in photonic-crystal slabs based on point-defected aperiodically-ordered supercells. With specific reference to perforated-slab structures and the Ammann-Beenker octagonal lattice geometry, we carry out full-wave numerical studies of the plane-wave responses and of the underlying modal structures, which illustrate the representative effects induced by the introduction of symmetry-preserving and symmetry-breaking defects. Our results demonstrate that breaking the supercell mirror symmetries via the judicious introduction of point-defects enables for the excitation of otherwise uncoupled GRs, with control on the symmetry properties of their field distributions, thereby constituting an attractive alternative to those GR-engineering approaches based on the asymmetrization of the hole shape. In this framework, aperiodically-ordered supercells seem to be inherently suited, in view of the variety of inequivalent defect sites that they can offer.

© 2009 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 12, 2009
Revised Manuscript: September 18, 2009
Manuscript Accepted: September 30, 2009
Published: October 14, 2009

Citation
Ilaria Gallina, Marco Pisco, Armando Ricciardi, Stefania Campopiano, Giuseppe Castaldi, Andrea Cusano, and Vincenzo Galdi, "Guided resonances in photonic crystals with point-defected aperiodically-ordered supercells," Opt. Express 17, 19586-19598 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, USA, 2008).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000). [CrossRef]
  4. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003). [CrossRef]
  5. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  6. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translation symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984). [CrossRef]
  7. D. Levine and P. J. Steinhardt, “Quasicrystals: A new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984). [CrossRef]
  8. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, Cambridge, UK, 1995).
  9. W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys. 40(13), R229–R247 (2007). [CrossRef]
  10. A. Della Villa, V. Galdi, S. Enoch, G. Tayeb, and F. Capolino, “Photonic quasicrystals: Basics and examples,” in Metamaterials Handbook, vol. I, F. Capolino, ed. (CRC Press, Boca Raton, FL, USA, 2009), ch. 27.
  11. D. N. Chigrin, and A. V. Lavrinenko, “Photonic applications of two-dimensional quasicrystals,” in Metamaterials Handbook, vol. II, F. Capolino, ed. (CRC Press, Boca Raton, FL, USA, 2009), ch. 28.
  12. A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-8-6335 . [PubMed]
  13. I. Gallina, A. Ricciardi, M. Pisco, S. Campopiano, G. Castaldi, A. Cusano, A. Cutolo, and V. Galdi, “Parametric study of guided resonances in octagonal photonic quasicrystals,” Microw. Opt. Technol. Lett. 51(11), 2737–2740 (2009). [CrossRef]
  14. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16954 . [CrossRef] [PubMed]
  15. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17(11), 2050–2057 (1999). [CrossRef]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  17. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004). [CrossRef]
  18. T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25(4), 633–644 (2008). [CrossRef]
  19. M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, “Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice,” Phys. Rev. B 63(16), 161104 (2001). [CrossRef]
  20. K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84(24), 4875–4877 (2004). [CrossRef]
  21. E. Di Gennaro, S. Savo, A. Andreone, V. Galdi, G. Castaldi, V. Pierro, and M. R. Masullo, “Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators,” Appl. Phys. Lett. 93(16), 164102 (2008). [CrossRef]
  22. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13090 . [CrossRef] [PubMed]
  23. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52(11), 7982–7986 (1995). [CrossRef]
  24. U. Grimm, and M. Schreiber, “Aperiodic tilings on the computer,” in Quasicrystals: An Introduction to Structure, Physical Properties, and Applications, J.-B. Suck, M. Schreiber, and P. Häussler, eds. (Springer, Berlin, Germany, 2002).
  25. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005). [CrossRef] [PubMed]
  26. A. Della Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi, “Localized modes in photonic quasicrystals with Penrose-type lattice,” Opt. Express 14(21), 10021–10027 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-10021 . [CrossRef] [PubMed]
  27. CST MICROWAVE STUDIO®, User Manual (CST GmbH, Darmstadt, Germany, 2008).
  28. BandSOLVE User Manual, (RSOFT Design Group Inc., Ossining, NY, USA, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited