OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19662–19673

Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields

Kyoji Matsushima and Tomoyoshi Shimobaba  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19662-19673 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method is proposed for simulating free-space propagation. This method is an improvement of the angular spectrum method (AS). The AS does not include any approximation of the propagation distance, because the formula thereof is derived directly from the Rayleigh-Sommerfeld equation. However, the AS is not an all-round method, because it produces severe numerical errors due to a sampling problem of the transfer function even in Fresnel regions. The proposed method resolves this problem by limiting the bandwidth of the propagation field and also expands the region in which exact fields can be calculated by the AS. A discussion on the validity of limiting the bandwidth is also presented.

© 2009 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.1760) Holography : Computer holography

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: August 10, 2009
Revised Manuscript: September 27, 2009
Manuscript Accepted: October 4, 2009
Published: October 15, 2009

Kyoji Matsushima and Tomoyoshi Shimobaba, "Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields," Opt. Express 17, 19662-19673 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967). [CrossRef]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  3. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  4. T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47(19), D136–D143 (2008). [CrossRef] [PubMed]
  5. K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47(19), D110–D116 (2008). [CrossRef] [PubMed]
  6. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005). [CrossRef] [PubMed]
  7. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47(10), 1567–1574 (2008). [CrossRef] [PubMed]
  8. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008). [CrossRef] [PubMed]
  9. T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: A comparison,” SPIE Proc. 3098, 224–233 (1997).
  10. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15(4), 857–867 (1998). [CrossRef]
  11. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20(9), 1755–1762 (2003). [CrossRef]
  12. S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47(16), 3064–3071 (2008). [CrossRef] [PubMed]
  13. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt. Express 13(24), 9935–9940 (2005). [CrossRef] [PubMed]
  14. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29(14), 1668–1670 (2004). [CrossRef] [PubMed]
  15. L. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31(7), 897–899 (2006). [CrossRef] [PubMed]
  16. D. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms,” Appl. Opt. 47(19), D12–D20 (2008). [CrossRef] [PubMed]
  17. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15(9), 5631–5640 (2007). [CrossRef] [PubMed]
  18. Y. M. Engelberg and S. Ruschin, “Fast method for physical optics propagation of high-numerical-aperture beams,” J. Opt. Soc. Am. A 21(11), 2135–2145 (2004). [CrossRef]
  19. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995). [CrossRef]
  20. E. A. Sziklas and A. E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method,” Appl. Opt. 14(8), 1874–1889 (1975). [CrossRef] [PubMed]
  21. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), chap. 2.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited