OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19682–19690

Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity

Gang Chen, J. -Q. Liang, and Suotang Jia  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19682-19690 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present an experimentally feasible scheme to simulate a generalized Lipkin-Meskov-Glick model in a Bose-Einstein condensate coupled dispersively with an ultrahigh-finesse optical cavity. This obtained Hamiltonian has a unique advantage in that all parameters can be controlled independently by using Feshbach resonance technique, a pump laser along cavity axis and an external driving laser. By the proper choice of parameters, the macroscopic quantum coherent effect with a large amplitude can be successfully achieved. Comparing with the exist schemes, our proposal has a cleaner, perhaps significantly improved to observe this whole coherent effect. Finally, we predict a novel interaction-induced topological transition, which is an abrupt variation from π to zero of the Berry phase.

© 2009 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Quantum Optics

Original Manuscript: August 27, 2009
Manuscript Accepted: September 26, 2009
Published: October 15, 2009

Gang Chen, J. -Q. Liang, and Suotang Jia, "Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity," Opt. Express 17, 19682-19690 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kitaev,"Anyons in an exactly solved model and beyond" Ann. Phys. 321, 2-111 (2006). [CrossRef]
  2. L. M. Duan, E. Demler, and M. D. Lukin, "Controlling spin exchange interactions of ultracold atoms in optical lattices," Phys. Rev. Lett. 91, 090402 (2003). [CrossRef] [PubMed]
  3. J. J. Garcia-Ripoll, M. A. Martin-Delgando, and J. I. Cirac, "Implementation of spin Hamiltonians in optical lattices," Phys. Rev. Lett. 93, 250405 (2004). [CrossRef]
  4. M. Lewenstein, A. Sanpera, V , Ahufinger, B . Damski, A . Sen, and U . Sen, "Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond," Adv. Phys. 56, 243-379 (2007). [CrossRef]
  5. H. J. Lipkin, N. Meshkov, and A. J. Glick, "Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory," Nucl. Phys. A 62, 188-198 (1965). [CrossRef]
  6. R. Botet, R. Jullien, and P. Pfeuty, "Size scaling for infinitely coordinated systems," Phys. Rev. Lett. 49, 478-481 (1982). [CrossRef]
  7. R. Botet and R. Jullien, "Large-size critical behavior of infinitely coordinated systems," Phys. Rev. B 28, 3955-3967 (1983). [CrossRef]
  8. S. Dusuel and J. Vidal, "Finite-size scaling exponents of the Lipkin-Meshkov-Glick model," Phys. Rev. Lett. 93, 237204 (2004). [CrossRef] [PubMed]
  9. S. Dusuel and J. Vidal, "Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model," Phys. Rev. B 71, 224420 (2005). [CrossRef]
  10. P. Ribeiro, J. Vidal, and R. Mosseri, "Thermodynamical Limit of the Lipkin-Meshkov-Glick Model," Phys. Rev. Lett. 99, 050402 (2007). [CrossRef] [PubMed]
  11. P. Ribeiro, J. Vidal, and R. Mosseri, "Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections," Phys. Rev. E 78, 021106 (2008). [CrossRef]
  12. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, "Entanglement in many-body systems," Rev. Mod. Phys. 80, 517-576 (2008). [CrossRef]
  13. R. Orus, S. Dusuel, and J. Vidal, "Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model," Phys. Rev. Lett. 101, 025701 (2008). [CrossRef] [PubMed]
  14. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. K¨ohl, and T Esslinger, "Cavity QED with a Bose-Einstein condensate," Nature 450, 268-271 (2007). [CrossRef] [PubMed]
  15. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, "Cavity optomechanics with a Bose-Einstein condensate," Science 322, 235-238 (2008). [CrossRef] [PubMed]
  16. C. Maschler and H. Ritsch, "Cold atom dynamics in a quantum optical lattice potential," Phys. Rev. Lett. 95, 260401 (2005). [CrossRef]
  17. J. Larson, B. Damski, G. Morigi, and M. Lewenstein, "Mott-Insulator states of ultracold atoms in optical resonators," Phys. Rev. Lett. 100, 050401 (2008). [CrossRef] [PubMed]
  18. J. Larson and M. Lewenstein, "Dilute gas of ultracold two-level atoms inside a cavity: generalized Dicke model," New J. Phys. 11, 063027 (2009). [CrossRef]
  19. J. M. Zhang, W. M. Liu, and D. L. Zhou, "Mean-field dynamics of a Bose Josephson junction in an optical cavity," Phys. Rev. A 78, 043618 (2008). [CrossRef]
  20. J. M. Zhang, F. C. Cui, D. L. Zhou, and W. M. Liu, "Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate in an optical cavity," Phys. Rev. A 79, 033401 (2009). [CrossRef]
  21. G. Chen, X. G. Wang, J. -Q. Liang, and Z. D. Wang, "Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity," Phys. Rev. A 78, 023634 (2008). [CrossRef]
  22. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Nijs, "Quantized Hall conductance in a two-dimensional periodic potential," Phys. Rev. Lett. 49, 405-408 (1982). [CrossRef]
  23. M. G. Moore, O. Zobay, and P. Meystre, "Quantum optics of a Bose-Einstein condensate coupled to a quantized light field," Phys. Rev. A 60, 1491-1506 (1999). [CrossRef]
  24. G. J. Miburn, J. Corney, E. M. Wright, and D. F. Walls, "Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential," Phys. Rev. A 55, 4318-4324 (1997). [CrossRef]
  25. R. G. Unanyan and M. Fleischhauer, "Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions," Phys. Rev. Lett. 90, 133601 (2003). [CrossRef] [PubMed]
  26. S. Morrison and A. S. Parkins, "Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED," Phys. Rev. Lett. 100, 040403 (2008). [CrossRef] [PubMed]
  27. A. Widera, O. Mandel, M. Greiner, S. Kreim, T W. Hansch, and I. Bloch, "Entanglement interferometry for precision measurement of atomic scattering properties," Phys. Rev. Lett. 92, 160406 (2004). [CrossRef] [PubMed]
  28. A. Widera, S. Trotzky, P. Cheinet, S. Foling, F. Gerbier, Immanuel Bloch, V. Gritsev, M. D. Lukin, and E . Demler, "Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases," Phys. Rev. Lett. 100, 140401 (2008). [CrossRef] [PubMed]
  29. G. Chen and J. -Q. Liang, "Unconventional quantum phase transition in the finite-size Lipkin-Meshkov-Glick model," New J. Phys. 8, 297 (2006). [CrossRef]
  30. W. Wernsdorfer and R. Sessoli, "Quantum phase interference and parity effects in magnetic molecular clusters" Science 284, 133-135 (1999). [CrossRef] [PubMed]
  31. R. Lu, M. Zhang, J. L. Zhu, and L. You, "Effect of even and odd numbers of atoms in a condensate inside a double-well potential," Phys. Rev. A 78, 011605(R) (2008). [CrossRef]
  32. W. M. Zhang, D. H. Feng, and R. Gilmore, "Coherent states: theory and some applications," Rev. Mod. Phys. 62, 867-927 (1990). [CrossRef]
  33. E. Fradkin, "Field Theories of Condensed Matter Systems," (MA: Addison-Wesley, Reading, 1992) Chap. 5.
  34. M. V. Berry, "Quantum phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited