## Three-photon N00N states generated by photon subtraction from double photon pairs

Optics Express, Vol. 17, Issue 22, pp. 19720-19726 (2009)

http://dx.doi.org/10.1364/OE.17.019720

Enhanced HTML Acrobat PDF (323 KB)

### Abstract

We describe an experimental demonstration of a novel three-photon N00N state generation scheme using a single source of photons based on spontaneous parametric down-conversion (SPDC). The three-photon entangled state is generated when a photon is subtracted from a double pair of photons and detected by a heralding counter. Interference fringes measured with an emulated three-photon detector reveal the three-photon de Broglie wavelength and exhibit visibility > 70% without background subtraction.

© 2009 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.4180) Quantum optics : Multiphoton processes

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: August 7, 2009

Revised Manuscript: September 20, 2009

Manuscript Accepted: October 12, 2009

Published: October 16, 2009

**Citation**

Heonoh Kim, Hee Su Park, and Sang-Kyung Choi, "Three-photon N00N states generated by photon subtraction from double photon pairs," Opt. Express **17**, 19720-19726 (2009)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19720

Sort: Year | Journal | Reset

### References

- A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000). [CrossRef] [PubMed]
- P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001). [CrossRef]
- Z. Y. Ou, “Fundamental quantum limit in precision phase measurement,” Phys. Rev. A 55(4), 2598–2609 (1997). [CrossRef]
- K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89(21), 213601 (2002). [CrossRef] [PubMed]
- D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science 304(5676), 1476–1478 (2004). [CrossRef] [PubMed]
- V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004). [CrossRef] [PubMed]
- U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Optimal quantum phase estimation,” Phys. Rev. Lett. 102(4), 040403 (2009). [CrossRef] [PubMed]
- T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007). [CrossRef] [PubMed]
- R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” N. J. Phys. 10(7), 073033 (2008). [CrossRef]
- J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B. E. A. Saleh, “Two-photon interference in a Mach-Zehnder interferometer,” Phys. Rev. Lett. 65(11), 1348–1351 (1990). [CrossRef] [PubMed]
- M. D’Angelo, M. V. Chekhova, and Y. H. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001). [CrossRef] [PubMed]
- Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15(21), 14244–14250 (2007). [CrossRef] [PubMed]
- B. J. Smith, P. J. Mosley, J. S. Lundeen, and I. Walmsley, “Heralded generation of two-photon NOON states for precision quantum metrology,” in Conference on lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper QFI5.
- H. S. Eisenberg, J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Multiphoton path entanglement by nonlocal bunching,” Phys. Rev. Lett. 94(9), 090502 (2005). [CrossRef] [PubMed]
- M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004). [CrossRef] [PubMed]
- P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429(6988), 158–161 (2004). [CrossRef] [PubMed]
- J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009). [CrossRef]
- L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009). [CrossRef] [PubMed]
- C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987). [CrossRef] [PubMed]
- J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74(24), 4835–4838 (1995). [CrossRef] [PubMed]
- H. Lee, P. Kok, N. J. Cerf, and J. P. Dowling, “Linear optics and projective measurements alone suffice to create large-photon-number path entanglement,” Phys. Rev. A 65(3), 030101 (2002). [CrossRef]
- P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A 65(5), 052104 (2002). [CrossRef]
- J. Fiurášek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65(5), 053818 (2002). [CrossRef]
- G. J. Pryde and A. G. White, “Creation of maximally entangled photon-number states using optical fiber multiport,” Phys. Rev. A 68(5), 052315 (2003). [CrossRef]
- H. F. Hofmann, “Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck,” Phys. Rev. A 70(2), 023812 (2004). [CrossRef]
- N. M. VanMeter, P. Lougovski, D. B. Uskov, K. Kieling, J. Eisert, and J. P. Dowling, “General linear-optical quantum state generation scheme: applications to maximally path-entangled states,” Phys. Rev. A 76(6), 063808 (2007). [CrossRef]
- H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99(16), 163604 (2007). [CrossRef] [PubMed]
- A. E. B. Nielsen and K. Mølmer, “Conditional generation of path-entangled optical |N,0+〉|0,N〉 states,” Phys. Rev. A 75(6), 063803 (2007). [CrossRef]
- H. F. Hofmann and T. Ono, “High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light,” Phys. Rev. A 76(3), 031806 (2007). [CrossRef]
- B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450(7168), 393–396 (2007). [CrossRef] [PubMed]
- A. Cho, “A new way to beat the limits on shrinking transistors?” Science 312(5774), 672a (2006). [CrossRef]
- F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73(2), 023808 (2006). [CrossRef]
- F. W. Sun, B. H. Liu, Y. F. Huang, Z. Y. Ou, and G. C. Guo, “Observation of the four-photon de Broglie wavelength by state-projection measurement,” Phys. Rev. A 74(3), 033812 (2006). [CrossRef]
- B. H. Liu, F. W. Sun, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and G. C. Guo, “Demonstration of the three-photon de Broglie wavelength by projection measurement,” Phys. Rev. A 77(2), 023815 (2008). [CrossRef]
- K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007). [CrossRef] [PubMed]
- N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95(21), 210504 (2005). [CrossRef] [PubMed]
- N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95(21), 210505 (2005). [CrossRef] [PubMed]
- R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95(21), 210506 (2005). [CrossRef] [PubMed]
- These two probabilities are reversed if we apply state projection measurements to |2H, 1V>PBS3 or |1H, 2V>PBS3, which reduces the sensitivity to unwanted superfluous states by a factor of nine.
- S. J. Bentley and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express 12(23), 5735–5740 (2004). [CrossRef] [PubMed]
- The visibility determines the lower bound of the magnitude of the off-diagonal density matrix element, and therefore leads to the lower bound of the fidelity.
- M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Shrödinger-cat-like states by means of conditional measurments on a beam splitter,” Phys. Rev. A 55(4), 3184–3194 (1997). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.