OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19739–19748

Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19739-19748 (2009)
http://dx.doi.org/10.1364/OE.17.019739


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By extending the net-gain modulation phasor approach to account for the discrete distribution of the gain and saturable absorber sections in the cavity, a convenient model is derived and experimentally verified for the cavity design of two-section passively mode-locked quantum dash (QDash) lasers. The new set of equations can be used to predict functional device layouts using the measured modal gain and loss characteristics as input. It is shown to be a valuable tool for realizing the cavity design of monolithic long-wavelength InAs/InP QDash passively mode-locked lasers.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 18, 2009
Revised Manuscript: September 15, 2009
Manuscript Accepted: October 6, 2009
Published: October 16, 2009

Citation
C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, "Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers," Opt. Express 17, 19739-19748 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]
  2. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003). [CrossRef]
  3. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007). [CrossRef] [PubMed]
  4. M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004). [CrossRef]
  5. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  6. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009). [CrossRef]
  7. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007). [CrossRef] [PubMed]
  8. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  9. D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009). [CrossRef]
  10. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999). [CrossRef]
  11. K. Y. Lau and J. Paslaski, “Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor-Lasers,” IEEE Photon. Technol. Lett. 3(11), 974–976 (1991). [CrossRef]
  12. J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991). [CrossRef]
  13. Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006). [CrossRef]
  14. P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003). [CrossRef]
  15. N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009). [CrossRef]
  16. A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005). [CrossRef]
  17. P. Vasilev, Mode-locking Diode Lasers, Ultrafast diode lasers Fundamentals and applications, (Artech House, Boston 1995), Chap. 4.
  18. Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008). [CrossRef]
  19. C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009). [CrossRef]
  20. F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009). [CrossRef]
  21. R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001). [CrossRef]
  22. N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited