OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19763–19777

Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy

Gaëlle Recher, Denis Rouède, Patrick Richard, Antoine Simon, Jean-Jaques Bellanger, and François Tiaho  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19763-19777 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (5014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have extensively characterized the sarcomeric SHG signal as a function of animal species (rat versus xenopus), age (adult versus larval) and tissue preparation (fixed or fresh) and we found that the main feature of this signal is a single peak per mature sarcomere (about 85% of all sarcomeres). The remaining (15%) was found to be either double peak per mature sarcomere or mini sarcomeres (half of a sarcomere) using α-actinin immuno detection of the Z-band. The mini sarcomeres are often found in region of pitchfork-like SHG pattern. We suggest that double peak SHG pattern could indicate regions of sarcomeric proteolysis whereas pitchfork-like SHG pattern could reveal sarcomeric assembly.

© 2009 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.0180) Microscopy : Microscopy
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 23, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: October 7, 2009
Published: October 16, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Gaëlle Recher, Denis Rouède, Patrick Richard, Antoine Simon, Jean-Jacques Bellanger, and François Tiaho, "Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy," Opt. Express 17, 19763-19777 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J 82, 493-508 (2002). [CrossRef]
  2. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnology 21, 1356-1360 (2003). [CrossRef] [PubMed]
  3. W. Mohler, A. C. Millard, and P. J. Campagnola, "Second harmonic generation imaging of endogenous structural proteins," Methods 29, 97-109 (2003). [CrossRef] [PubMed]
  4. F. Tiaho, G. Recher, and D. Rouède, "Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy," Opt. Express 15, 12286-12295 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12286. [CrossRef] [PubMed]
  5. G. Cox, N. Moreno, J. Feijó, "Second-harmonic imaging of plant polysaccharides," J. Biomed. Opt. 10, 024013 (2005). [CrossRef] [PubMed]
  6. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin and C. K. Sun, "Studies of x(2)/x(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy," Biophys. J. 86, 3914- 3922 (2004). [CrossRef] [PubMed]
  7. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues," Biophys J. 92, 3251-3259 (2007). [CrossRef] [PubMed]
  8. S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, "In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy," J. Biomed. Opt. 14, 014001 (2009). [CrossRef] [PubMed]
  9. D. E. Rudy, T. A. Yatskievych, P. B. Antin and C. C. Gregorio, "Assembly of thick, thin, and titin filaments in chick precardiac explants," Dev. Dyn. 221, 61-71 (2001). [CrossRef] [PubMed]
  10. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, "Collagen and myosin characterization by orientation field second harmonic microscopy," Opt. Express 16, 16151-16165 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16151. [CrossRef] [PubMed]
  11. J. C. Sparrow, and F. Schock, "The initial steps of myofibril assembly: integrins pave the way," Nat. Rev. Mol. Cell Biol. 10, 293-298 (2009). [CrossRef] [PubMed]
  12. R. Craig and J. L. Woodhead, "Structure and function of myosin filaments," Curr. Opin. Struct. Biol. 16, 204-212 (2006). [CrossRef] [PubMed]
  13. R. Craig, and R. Padron, Molecular structure of the sarcomere (McGraw-Hill, New York, 2004).
  14. S. G. Page, and H. E. Huxley, "Filament Lengths in Striated Muscle," J. Cell Biol. 19, 369-390 (1963). [CrossRef] [PubMed]
  15. F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, "New techniques in linear and non-linear laser optics in muscle research," J. Muscle Res. Cell Motil. 27, 469-479 (2006). [CrossRef] [PubMed]
  16. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, andW. A. Mohler, "Measurement of muscle disease by quantitative second-harmonic generation imaging," J Biomed. Opt. 13, 044018 (2008). [CrossRef] [PubMed]
  17. F. Légaré, C. Pfeffer, and B. R. Olsen, "The role of backscattering in SHG tissue imaging," Biophys. J. 93, 1312-1320 (2007). [CrossRef] [PubMed]
  18. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, "Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence," J. Struct. Biol. 162, 500-508 (2008). [CrossRef] [PubMed]
  19. T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, "Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy," Opt. Lett. 29, 2031- 2033 (2004). [CrossRef] [PubMed]
  20. M. Both, M. Vogel, O. Friedrich, F. vonWegner, T. Kunsting, R. H. Fink, and D. Uttenweiler, "Second harmonic imaging of intrinsic signals in muscle fibers in situ," J. Biomed. Opt. 9, 882-892 (2004). [CrossRef] [PubMed]
  21. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys. J. 90, 693-703 (2006). [CrossRef]
  22. C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, "Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes," Appl. Opt. 46, 1852- 1859 (2007). [CrossRef] [PubMed]
  23. N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, "Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy," J. Biomed. Opt. 13, 041318 (2008). [CrossRef] [PubMed]
  24. T. Shimizu, J. E. Dennis, T. Masaki, and D. A. Fischman, "Axial Arrangement of the Myosin Rod in Vertebrate Thick Filaments: Immunoelectron Microscopy with a Monoclonal Antibody to Light Meromyosin," J. Cell Biol. 101, 1115-1123 (1985). [CrossRef] [PubMed]
  25. Max Born & Emil Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, 6th Edition, Oxford, 1980). [PubMed]
  26. J. W. Sanger, S. M. Kang, C. C. Siebrands, N. Freeman, A. P. Du, J. S. Wang, A. L. Stout, and J. M. Sanger, "How to build a myofibril," J. Muscle Res. Cell Motil. 26, 343-354 (2005). [CrossRef]
  27. S. G. Mallat, A wavelet tour of signal processing (Academic Press, 2nd Edition, London, 1999).
  28. L. D. Taylor and E. Bandman, "Distribution of fast myosin heavy chain isoforms in thick filaments of developing chicken pectoral muscle," J. Cell Biol. 108, 533 - 542 (1989). [CrossRef] [PubMed]
  29. R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, "Lesions in the rat soleus muscle following eccentrically biased exercise," Am. J. Anat. 182, 335-346 (1988). [CrossRef] [PubMed]
  30. J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, "Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle - A test model," Anat. Record 254, 39-52 (1999). [CrossRef]
  31. I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, "M-band: a safeguard for sarcomere stability?," J. Muscle Res. Cell Motil. 24, 191-203 (2003). [CrossRef] [PubMed]
  32. S. K. Powers, A. N. Kavazis, and K. C. DeRuisseau, "Mechanisms of disuse muscle atrophy: role of oxidative stress," Am J Physiol Regul Integr Comp Physiol 228, R337-R344 (2005).
  33. A. M. Solomon and P. M. G. Bouloux, "Modifying muscle mass - the endocrine perspective," J. Endocrinol. 191, 349-360 (2006). [CrossRef] [PubMed]
  34. I. Freund, M. Deutsch, and A. Sprecher, "Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693-712 (1986). [CrossRef] [PubMed]
  35. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Veterlin, Numerical Recipe (Cambridge University Press, Cambridge, 1986).
  36. D. Rhee, J. M. Sanger, and J. W. Sanger, "The premyofibril: evidence for its role in myofibrillogenesis," Cell Motil. Cytoskeleton 28, 1-24 (1994). [CrossRef] [PubMed]
  37. J. W. Sanger, J. Wang, B. Holloway, A. Du, and J. M. Sanger, "Myofibrillogenesis in skeletal muscle cells in zebrafish," Cell Motil Cytoskeleton, Epub ahead of print (2009). [CrossRef] [PubMed]
  38. A. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited