OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19823–19841

Cyclic Sommerfeld Resonances in Nanorods at Grazing Incidences

Simin Feng, Klaus Halterman, Pamela L. Overfelt, and Donald Bowling  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19823-19841 (2009)
http://dx.doi.org/10.1364/OE.17.019823


View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate electromagnetic scattering from nanoscale wires and reveal the emergence of a family of exotic resonances for source waves close to grazing incidence. These grazing resonances have a much higher Q-bandwidth product and thus, a much higher Q factor and broader bandwidth than the pure plasmonic resonances found in metal nanowires. Furthermore, these grazing resonances are much less susceptible to material losses than surface plasmon resonances. Contrary to the process of exciting surface plasmon resonances, these grazing resonances can arise in both dielectric and metallic nanowires and appear near to the cutoff wavelength of the circular waveguide. This peculiar resonance effect originates from the excitation of long range guided surface waves through the interplay of coherently scattered continuum modes coupled with first-order azimuthal propagating modes of the cylindrical nanowire. These first-order cyclic Sommerfeld waves and associated cyclic Sommerfeld resonances revealed here opens up the possibility of an alternative scheme of enhanced fields with a better merit (higher Q-bandwidth product and lower loss) than conventional surface plasmon resonances in the nano-regime. This nanowire resonance phenomenon can be utilized in broad scientific areas, including: metamaterial designs, nanophotonic integration, nanoantennas, and nanosensors.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.5740) Physical optics : Resonance
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: August 18, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 12, 2009
Published: October 16, 2009

Citation
Simin Feng, Klaus Halterman, Pamela L. Overfelt, and Donald Bowling, "Cyclic Sommerfeld Resonances in Nanorods at Grazing Incidences," Opt. Express 17, 19823-19841 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19823


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, "Plasmonics: The Promise of Highly Integrated Optical Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671 (2006). [CrossRef]
  2. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102 (1997). [CrossRef] [PubMed]
  3. H. Xu, E. J. Bjerneld, M. K'all, and L. B'orjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999). [CrossRef]
  4. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793 (2008). [CrossRef] [PubMed]
  5. C. Rockstuhl, S. Fahr, and F. Lederer, "Absorption enhancement in solar cells by localized plasmon polaritons," J. Appl. Phys. 104, 123102 (2008). [CrossRef]
  6. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005). [CrossRef]
  7. S. Feng and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006). [CrossRef] [PubMed]
  8. J. Valentine, S. Zhang, T. Zentgraf, E. U. Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index." Nature (London) 455, 376 (2008). [CrossRef]
  9. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yua, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials." Opt. Lett. 30, 3356 (2005). [CrossRef]
  10. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001). [CrossRef]
  11. B. S. Luk’yanchuk and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field," Phys. Rev. B 73, 235432 (2006). [CrossRef]
  12. L. Rayleigh, "On the Electromagnetic Theory of Light," Philos. Mag. 12, 81-101 (1881).
  13. J. R. Wait, "Scattering Of A Plane Wave From A Circular Dielectric Cylinder At Oblique Incidence," Can. J. Phys. 33, 189 (1955). [CrossRef]
  14. J. R. Wait, "The Long Wavelength Limit In Scattering From A Dielectric Cylinder At Oblique Incidence," Can. J. Phys. 43, 2212 (1965). [CrossRef]
  15. L. G. Guimarães and J. P. R. Furtado de Mendonca, "Analysis of the resonant scattering of light by cylinders at oblique incidence," Appl. Opt. 36, 8010 (1997). [CrossRef]
  16. A. Lind and J. Greenberg, "Electromagnetic Scattering by Obliquely Oriented Cylinders," J. Appl. Phys. 37, 3195 (1965). [CrossRef]
  17. P. Rousseau, H. Khemliche, A. G. Borisov, and P. Roncin, "Quantum Scattering of Fast Atoms and Molecules on Surfaces," Phys. Rev. Lett. 98, 016104 (2007) [CrossRef] [PubMed]
  18. Z.-H. Gu, I. M. Fuks, and M. Ciftan, "Enhanced backscattering at grazing angles," Opt. Lett. 27, 2067 (2002). [CrossRef]
  19. D. E. Barrick, "Grazing Behavior of Scatter and Propagation Above Any Rough Surface," IEEE Trans. Antennas Propag. 46, 73 (1998). [CrossRef]
  20. A. W. Snyder and D. J. Mitchell, "Leaky rays on circular optical fibers," J. Opt. Soc. Am. 64, 599 (1974). [CrossRef]
  21. R. Sammut and A. W. Snyder, "Leaky modes on circular optical waveguides," Appl. Opt. 15, 477 (1976). [CrossRef] [PubMed]
  22. M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10246 (1962). [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory, (McGraw-Hill, New York, 1941).
  24. S. Feng and K. Halterman, "Exotic Grazing Resonances in Nanowires," http://arxiv.org/pdf/0905.1357.
  25. D. R. Fredkin and I. D. Mayergoyz, "Resonant Behavior of Dielectric Objects (Electrostatic Resonances)," Phys. Rev. Lett. 91, 253902 (2003). [CrossRef]
  26. E. Feigenbaum and M. Orenstein, "Ultrasmall Volume Plasmons, yet with Complete Retardation Effects," Phys. Rev. Lett. 101, 163902 (2008). [CrossRef] [PubMed]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, Weinheim, Germany, 2004).
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  29. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837 (1996). [CrossRef]
  30. E. Centeno and D. Felbacq, "Characterization of defect modes in finite bidimensional photonic crystals," J. Opt. Soc. Am. A 16, 2705 (1999). [CrossRef]
  31. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002). [CrossRef]
  32. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited