OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19842–19847

Iterative bandgap engineering at selected areas of quantum semiconductor wafers

Radoslaw Stanowski, Matthieu Martin, Richard Ares, and Jan J. Dubowski  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19842-19847 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the application of a laser rapid thermal annealing technique for iterative bandgap engineering at selected areas of quantum semiconductor wafers. The approach takes advantage of the quantum well intermixing (QWI) effect for achieving targeted values of the bandgap in a series of small annealing steps. Each QWI step is monitored by collecting a photoluminescence map and, consequently, choosing the annealing strategy of the next step. An array of eight sites, 280 μm in diameter, each emitting at 1480 nm, has been fabricated with a spectral accuracy of better than 2 nm in a standard InGaAs/InGaAsP QW heterostructure that originally emitted at 1550 nm.

© 2009 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(160.3130) Materials : Integrated optics materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Integrated Optics

Original Manuscript: August 3, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: October 6, 2009
Published: October 16, 2009

Radoslaw Stanowski, Matthieu Martin, Richard Ares, and Jan J. Dubowski, "Iterative bandgap engineering at selected areas of quantum semiconductor wafers," Opt. Express 17, 19842-19847 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Heidrich, “Monolithically integrated photonic and optoelectronic circuits based on InP - System applications, technology, perspectives,” Microsystem Technol.-Micro-and Nanosystems-Inform, Storage and Proc. Systems 9, 295–298 (2003).
  2. P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996). [CrossRef]
  3. K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986). [CrossRef]
  4. J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990). [CrossRef]
  5. Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001). [CrossRef]
  6. N. Tamura and Y. Shimamune, “45 nm CMOS technology with low temperature selective epitaxy of SiGe,” Appl. Surf. Sci. 254(19), 6067–6071 (2008). [CrossRef]
  7. N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994). [CrossRef]
  8. C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998). [CrossRef]
  9. K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008). [CrossRef]
  10. T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994). [CrossRef]
  11. K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000). [CrossRef]
  12. N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007). [CrossRef]
  13. Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005). [CrossRef]
  14. R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986). [CrossRef]
  15. E. H. Li, Selected papers on quantum well intermixing for photonics, Bellingham, Wash.: SPIE Optical Engineering Press, 1998.
  16. J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992). [CrossRef]
  17. J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998). [CrossRef]
  18. E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005). [CrossRef]
  19. A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997). [CrossRef]
  20. J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000). [CrossRef]
  21. J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002). [CrossRef]
  22. J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004). [CrossRef]
  23. R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006). [CrossRef]
  24. J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008). [CrossRef]
  25. T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007). [CrossRef]
  26. R. Stanowski and J. J. Dubowski, “Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique,” Appl. Phys., A Mater. Sci. Process. 94(3), 667–674 (2009). [CrossRef]
  27. R. Stanowski, S. Bouazis, and J. J. Dubowski, “Selective area bandgap engineering of InGaAsP/InP quantum well microstructures with an infrared laser rapid thermal annealing technique,” Proc. SPIE, Vol., vol. 6869, 68790D (2008).
  28. L. Lu, A. Mock, M. Bagheri, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “Double-heterostructure photonic crystal lasers with lower thresholds and higher slope efficiencies obtained by quantum well intermixing,” Opt. Express 16(22), 17342–17347 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited