OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19857–19867

Cross-correlation between spiral modes and its influence on the overall spatial characteristics of partially coherent beams

R. Martínez-Herrero, A. Manjavacas, and P. M. Mejías  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19857-19867 (2009)
http://dx.doi.org/10.1364/OE.17.019857


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The overall spatial structure of a general partially coherent field is shown to be connected with the cross-correlation between the so-called spiral modes, understood as the terms of the spiral-harmonics series expansion of the field. The formalism based on the beam irradiance-moments is used, and the light field is globally described by the beam width, the far-field divergence, the beam quality factor, the orientation of the beam profile and the angular orbital momentum, given as the sum of its asymmetrical and vortex parts. This overall spatial description is expressed in terms of the intermodal coherence features (cross-correlation between spiral modes). The above analytical results are also illustrated by means of an example.

© 2009 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: June 10, 2009
Revised Manuscript: July 20, 2009
Manuscript Accepted: September 8, 2009
Published: October 19, 2009

Citation
R. Martínez-Herrero, A. Manjavacas, and P. M. Mejías, "Cross-correlation between spiral modes
and its influence on the overall spatial characteristics of partially coherent beams," Opt. Express 17, 19857-19867 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19857


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and ornital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281, 1968–1975 (2008).
  2. R. Martínez-Herrero and A. Manjavacas, “Overall second-order parametric characterization of light beams propagating through spiral phase elements,” Opt. Commun. 282(4), 473–477 (2009). [CrossRef]
  3. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 0136011–0136014 (2002).
  4. M. V. Vasnetsov, J. P. Torres, D. V. Petrov, and L. Torner, “Observation of the orbital angular momentum spectrum of a light beam,” Opt. Lett. 28(23), 2285–2287 (2003). [CrossRef] [PubMed]
  5. L. Torner, J. P. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13(3), 873–881 (2005). [CrossRef] [PubMed]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  7. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999). [CrossRef]
  8. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997). [CrossRef]
  9. M. V. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  10. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28(12), 968–970 (2003). [CrossRef] [PubMed]
  11. T. Alieva and M. J. Bastiaans, “Evolution of the vortex and the asymmetrical parts of orbital angular momentum in separable first-order optical systems,” Opt. Lett. 29(14), 1587–1589 (2004). [CrossRef] [PubMed]
  12. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  13. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  14. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65(5), 322–328 (1988). [CrossRef]
  15. S. Lavi, R. Prochaska, and E. Keren, “Generalized beam parameters and transformation law for partially coherent light,” Appl. Opt. 27(17), 3696–3703 (1988). [CrossRef] [PubMed]
  16. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first- order optical systems,” Optik (Stuttg.) 82, 173–181 (1989).
  17. A. E. Siegman, “New developments in laser resonators” in Laser Resonators,” Proc. SPIE 1224, 2–14 (1990). [CrossRef]
  18. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24(9), S1027–1049 (1992). [CrossRef]
  19. R. Martínez-Herrero and P. M. Mejías, “Expansion of the cross-spectral density function of general fields and its application to beam characterization,” Opt. Commun. 94(4), 197–202 (1992). [CrossRef]
  20. R. Martínez-Herrero, P. M. Mejías, G. Piquero, and J. M. Movilla, “Parametric characterization of the spatial structure of non-uniformly polarized laser beams,” Prog. Quantum Electron. 26(2), 65–130 (2002). [CrossRef]
  21. A. Ya. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, and M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75(3), 127–130 (2002). [CrossRef]
  22. A. Ya Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams,” J. Opt. Soc. Am. A 20(8), 1635–1643 (2003). [CrossRef]
  23. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25(1), 26–30 (1978). [CrossRef]
  24. R. Martínez-Herrero and P. M. Mejías, “On the control of the spatial orientation of the transverse profile of a light beam,” Opt. Express 14(3), 1086–1093 (2006). [CrossRef] [PubMed]
  25. R. Martínez-Herrero and P. M. Mejías, “On the spatial orientation of the transverse irradiance profile of partially coherent beams,” Opt. Express 14(8), 3294–3303 (2006). [CrossRef] [PubMed]
  26. R. Simon and N. Mukunda, “Twisted Gaussian-Schell-model beams,” J. Opt. Soc. Am. A 10(1), 95–109 (1993). [CrossRef]
  27. F. Gori, V. Bagini, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, “Coherent and partially coherent twisting beams,” Opt. Rev. 1, 143–145 (1994).
  28. G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11(8), 2257–2264 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 4
 
Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited