OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19908–19918

A high numerical aperture, polymer-based, planar microlens array

Anurag Tripathi, Trushal Vijaykumar Chokshi, and Nikos Chronis  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19908-19918 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel microfabrication approach for obtaining arrays of planar, polymer-based microlenses of high numerical aperture. The proposed microlenses arrays consist of deformable, elastomeric membranes that are supported by polymer-filled microchambers. Each membrane/microchamber assembly is converted into a solid microlens when the supporting UV–curable polymer is pressurized and cured. By modifying the microlens diameter (40-60 μm) and curing pressure (7.5-30 psi), we demonstrated that it is possible to fabricate microlenses with a wide range of effective focal lengths (100–400 μm) and numerical apertures (0.05-0.3). We obtained a maximum numerical aperture of 0.3 and transverse resolution of 2.8 μm for 60 μm diameter microlenses cured at 30 psi. These values were found to be in agreement with values obtained from opto-mechanical simulations. We envision the use of these high numerical microlenses arrays in optical applications where light collection efficiency is important.

© 2009 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 29, 2009
Revised Manuscript: October 6, 2009
Manuscript Accepted: October 6, 2009
Published: October 19, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Anurag Tripathi, Trushal Vijaykumar Chokshi, and Nikos Chronis, "A high numerical aperture, polymer-based, planar microlens array," Opt. Express 17, 19908-19918 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992). [CrossRef]
  2. H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998). [CrossRef]
  3. Y.-P. Huang, H.-P. D. Shieh, and S.-T. Wu, “Applications of Multidirectional Asymmetrical Microlens-Array Light-Control Films on Reflective Liquid-Crystal Displays for Image Quality Enhancement,” Appl. Opt. 43(18), 3656–3663 (2004). [CrossRef] [PubMed]
  4. H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, “Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array-Theory and Experiment,” J. Display Technol. 1(2), 278–282 (2005). [CrossRef]
  5. K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005). [CrossRef]
  6. B. Javidi, S.-H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45(13), 2986–2994 (2006). [CrossRef] [PubMed]
  7. M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002). [CrossRef]
  8. K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003). [CrossRef]
  9. M. Eisner, N. Lindlein, and J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23(10), 748–749 (1998). [CrossRef]
  10. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001). [CrossRef]
  11. K. Aljasem, D. Mader, A. Werber, H. Zappe, and S. Reichelt, “Pneumatically-actuated tunable microlens for endoscopic optical coherence tomography Transducers 2007 - 2007 International Solid-State Sensors Actuators and Microsystems Conference,” (2007), pp. 2557–2560.
  12. M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002). [CrossRef]
  13. D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001). [CrossRef]
  14. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998). [CrossRef]
  15. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002). [CrossRef]
  16. S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002). [CrossRef]
  17. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009). [CrossRef] [PubMed]
  18. P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998). [CrossRef]
  19. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003). [CrossRef]
  20. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005). [CrossRef]
  21. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007). [CrossRef]
  22. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008). [CrossRef]
  23. K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008). [CrossRef] [PubMed]
  24. X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008). [CrossRef]
  25. N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003). [CrossRef] [PubMed]
  26. X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009). [CrossRef] [PubMed]
  27. D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008). [CrossRef] [PubMed]
  28. E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006). [CrossRef]
  29. M. Oikawa, H. Nemoto, K. Hamanaka, and E. Okuda, “High numerical aperture planar microlens with swelled structure,” Appl. Opt. 29(28), 4077–4080 (1990). [CrossRef] [PubMed]
  30. S. Inoue, and K. R. Spring, Video Microscopy The Fundamentals (Plenum Publishing Corporation, New York, 1997).
  31. J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited