OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19926–19932

Terahertz ambipolar dual-wavelength quantum cascade laser

L. Lever, N. M. Hinchcliffe, S. P. Khanna, P. Dean, Z. Ikonić, C. A. Evans, A. G. Davies, P. Harrison, E. H. Linfield, and R. W. Kelsall  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19926-19932 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (587 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz frequency quantum cascade lasers (THz QCLs) are compact solid-state sources of terahertz radiation that were first demonstrated in 2002. They have a broad range of potential applications ranging from gas sensing and non-destructive testing, through to security and medical imaging, with many polycrystalline compounds having distinct fingerprint spectra in the terahertz frequency range. In this article, we demonstrate an electrically-switchable dual-wavelength THz QCL which will enable spectroscopic information to be obtained within a THz QCL-based imaging system. The device uses the same active region for both emission wavelengths: in forward bias, the laser emits at 2.3 THz; in reverse bias, it emits at 4 THz. The corresponding threshold current densities are 490 A/cm2 and 330 A/cm2, respectively, with maximum operating temperatures of 98K and 120 K.

© 2009 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 12, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: October 6, 2009
Published: October 19, 2009

L. Lever, N. M. Hinchcliffe, S. P. Khanna, P. Dean, Z. Ikonic, C. A. Evans, A. G. Davies, P. Harrison, E. H. Linfield, and R. W. Kelsall, "Terahertz ambipolar dual-wavelength quantum cascade laser," Opt. Express 17, 19926-19932 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1(2), 97-105 (2007). [CrossRef]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002). [CrossRef]
  3. S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009). [CrossRef]
  4. B. S. Williams, "THz quantum cascade lasers," Nat. Photonics 1, 517-525 (2007). [CrossRef]
  5. G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).
  6. J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).
  7. C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999). [CrossRef]
  8. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003). [CrossRef]
  9. M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999). [CrossRef]
  10. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed. (Wiley, Chichester, 2005). [CrossRef] [PubMed]
  11. Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004). [CrossRef]
  12. T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003). [CrossRef]
  13. P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002). [CrossRef]
  14. V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006). [CrossRef]
  15. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).
  16. S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006). [CrossRef]
  17. B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003). [CrossRef]
  18. M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004). [CrossRef]
  19. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006). [CrossRef]
  20. S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).
  21. S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004). [CrossRef]
  22. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007). [CrossRef]
  23. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16(5), 3242-3248 (2008). [CrossRef]
  24. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005). [CrossRef]
  25. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, "Determination of Guided and Leaky Modes in Lossless and Lossy Planar Multilayer Optical Waveguides: Reflection Pole Method and Wavevector Density Method," J. Lightwave Technol. 17(5), 929 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited