OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19933–19939

Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers

Feng Li and Zetian Mi  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19933-19939 (2009)
http://dx.doi.org/10.1364/OE.17.019933


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors report on the achievement of lasing in rolled-up semiconductor microtubes at room temperature, wherein self-organized InGaAs/GaAs quantum dots are incorporated as the gain medium. The free-standing quantum dot microtubes, with a diameter of ~ 5-6 μm and wall thickness of ~ 100 nm, are formed when the coherently strained InGaAs/GaAs quantum dot heterostructure is selectively released from the GaAs substrate. The devices are characterized by an ultralow threshold (~ 4 μW) and a minimum intrinsic linewidth of ~ 0.2 – 0.3 nm at room temperature. The multiple lasing modes are analyzed using both the finite-difference time domain method and also a planar dielectric waveguide model.

© 2009 OSA

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(130.3990) Integrated optics : Micro-optical devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 24, 2009
Revised Manuscript: October 11, 2009
Manuscript Accepted: October 12, 2009
Published: October 19, 2009

Citation
Feng Li and Zetian Mi, "Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers," Opt. Express 17, 19933-19939 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19933


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006). [CrossRef]
  2. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009). [CrossRef]
  3. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006). [CrossRef]
  4. P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006). [CrossRef]
  5. P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE 95(9), 1723–1740 (2007). [CrossRef]
  6. S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007). [CrossRef]
  7. S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006). [CrossRef]
  8. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006). [CrossRef]
  9. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006). [CrossRef] [PubMed]
  10. V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000). [CrossRef]
  11. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009). [CrossRef]
  12. M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003). [CrossRef]
  13. R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007). [CrossRef]
  14. F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009). [CrossRef] [PubMed]
  15. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008). [CrossRef] [PubMed]
  16. F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009). [CrossRef]
  17. C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008). [CrossRef]
  18. M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett. 90(18), 181107 (2007). [CrossRef]
  19. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005). [CrossRef]
  20. G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited